On Banhatti and Zagreb Indices


  • I. Gutman
  • V. R. Kulli
  • B. Chaluvaraju
  • H. S. Boregowda


Let G = (V;E) be a connected graph. The Zagreb indices were in-
troduced as early as in 1972. They are dened as M1(G) =
Σ uv2E(G)[dG(u)+ dG(v)] and M2(G) = Σ uv2E(G) dG(u)dG(v), where dG(u) denotes the degree of a vertex u. The K Banhatti indices were introduced by Kulli in  2016. They are dened as B1(G) = Σ ue[dG(u) + dG(e)] and B2(G) = Σ ue dG(u)dG(e),
where ue means that the vertex u and edge e are incident and dG(e) denotes the degree of the edge e in G. These two typ es of indices are closely related. In this paper, we obtain some relations between them. We also provide lower and upper bounds for B1(G) and B2(G) of a connected graph in terms of Zagreb indices.


В.М.Брадис, В.Л.Минковсий, А.К.Харачева, Ошибки в математических расуждениях,„Учпедгиз“, Москва 1959.

В.А.Никифоровский, Л.С.Фрейман, Рождение новой математики,„Наука“, Москва 1976.

Д.Я. Стройк, Краткий очерк истории Математики, Наука, Москва 1984.

М. Клайн, Математика Урата определенности, „Мир“, Москва 1984

Павле М. Миличић, 10 тема из математике, Завод за уџбенике, Београд 2010