Fuzzy Prime Ideals in Ordered Г-Semirings

Authors

  • Marapureddy Murali Krishna Rao

Abstract

We introduce the notion of ideal, prime ideal, fuzzy ideal, fuzzy
prime ideal of ordered Г -semiring and study their properties and relations between them. We characterize the prime ideals of ordered Г - semiring with respect to fuzzy ideals. And also characterize simple ordered Г - semiring with respect to fuzzy prime ideals of ordered We introduce the notion of ideal, prime ideal, fuzzy ideal, fuzzy


References

[1] T. K. Dutta, S. K. Sardar and S. Goswami. Operations on fuzzy ideals of Г -semirings, arXiv:1101.4791 [math.RA], 25 Jan 2011.

[2] Y. B. Jun and C. Y. Lee. Fuzzy Г '- rings, Pusan Kyongnam Math. J. (now, emphEast Asian Math. J.) 8(2)(1992), 163-170.

[3] Y. B. Jun, J. Naggers and H. S. Kim. Normal L-fuzzy ideal in semirings, Fuzzy Sets and Systems, 82(3)(1996), 383-386.

[4] N. Kuroki. On fuzzy semigroups, Information Sciences, 53(3)(1991), 203-236.

[5] H. Lehmer. A ternary analogue of abelian groups, American J. Math., 59(2)(1932), 329-338.

[6] W. J. Liu. Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8(2)(1982), 133-139.

[7] W. G. Lister. Ternary rings, Tran. Amer. Math. Soc., 54 (1971), 37-55.

[8] D. Mandal. Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy Inf. Eng., 6(1)(2014), 101-114.

[9] M. Murali Krishna Rao. Г - semirings-I, Southeast Asian Bull. Math., 19(1)(1995), 49-54.

[10] M. Murali Krishna Rao. Г - semirings-II, Southeast Asian Bull. Math., 211997, 281-287.

[11] M. Murali Krishna Rao. The Jacobson Radical of a Г - semiring, Southeast Asian Bull. Math., 23(1)(1999), 127-134.

[12] M. Murali Krishna Rao. T-fuzzy ideals in ordered Г - semirings, Ann. Fuzzy Math. Informatics, 13(2)(2017), 8-31.

[13] M. Murali Krishna Rao. Fuzzy soft Г - semiring and fuzzy soft k ideal over Г - semiring, Ann. Fuzzy Math. Informatics, 9(2)(2015), 341-354.

[14] M. Murali Krishna Rao and B. Venkateswarlu. Fuzzy Фиlters in Г - semirings, Malaya J. Mat., 3(1)(2015), 93-98.

[15] M. Murali Krishna Rao and B. Venkateswarlu. Regular Г - semiring and Фиeld Г - semiring, Novi Sad J. Math., 45 (2) (2015), 155-171.

[16] N. Nobusawa. On a generalization of the ring theory, Osaka. J. Math., 1(1)(1964), 81-89.

[17] A. Rosenfeld. Fuzzy groups, J. Math.Anal.Appl., 5(3)(1971), 512-517.

[18] M. K. Sen. On Г - semigroup, Procedings of the International Conference of Algebra and its Application, (pp. 301{308) , Decker Publicaiton, New York, 1981.

[19] U. M. Swamy and K. L. N. Swamy. Fuzzy prime ideals of rings, J. Math. Anal. Appl., 134(1)(1988), 94-103.

[20] H. S. Vandiver. Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.), 40(12)(1934), 914-920.

[21] L. A. Zadeh. Fuzzy sets, Information and Control, 8(3)(1965), 338-353.

[22] Y. Zhang. Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems, 27(3)(1988), 345-350.

Published

2017-02-13

Issue

Section

Чланци
link situs slot gacor terbaru Situs toto togel 4D Toto Situs agen toto togel 4D Situs toto togel terpercaya slot deposit pulsa bandar togel 4d bandar togel 4d situs togel slot bandar togel resmi bandar togel 4d slot online gacor bandar slot pulsa situs togel 4d situs togel macau bandar togel macau situs togel hk judi slot online situs toto togel 4d situs toto togel keluaran toto togel slot togel 4d situs toto togel toto togel resmi togel resmi 4d bandar togel 4d toto macau 4d bandar togel 4d slot deposit pulsa situs toto togel 4d situs togel terpercaya situs toto togel situs slot online situs togel 4d situs togel toto toto togel 4d slot togel 4d situs togel terpercaya togel toto slot bandar togel terpercaya toto togel situs toto 4d resmi situs togel toto 4d bandar toto macau terpercaya bo toto togel 4d resmi agen togel 4d