Multi-valued fixed points results via rational type contractive conditions in complex valued metric spaces
Abstract
We establish some common xed point theorems for multi-valuedmappings in complex valued metric spaces satisfying rational type contractive conditions. Our results unify, extend and improve many recent results of the literature.
References
[1] J. Ahmad, C. Klin-Eam and A. Azam. Common Fixed points for multivalued mappings in complex valued metric spaces with applications, Abstract and Applied Analysis, 2013, Article
ID 854965, 2013, 12 pages, doi: 10.1155/2013/854965.
[2] A. Azam and I. Beg. Common Fixed points of fuzzy maps, Mathematical and Computer Modelling, 49(7)(2009), 331-1336.
[3] A. Azam, B. Fisher and M. Khan. Common Fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32(3)(2011), 243-253.
[4] S. Banach. Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math, 3(1)(1922), 133-181.
[5] V. V. Chistyakov. Modular metric spaces, I: basic concepts, Nonlinear Analysis: Theory, Methods & Applications, 72(1)(2010), 1-14.
[6] M. Edelstein. An extension of Banach's contraction principle, Proceedings of the American Mathematical Society, 12(1)(1961), 7-10.
[7] M. Edelstein. On Fixed and periodic points under contractive mappings, Journal of the London Mathematical Society, 37(1)(1962), 74-79.
[8] L. Huang and X. Zhang. Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 332(2)(2007), 1468-1476.
[9] C. Klin-eam and C. Suanoom. Some common fixed-point theorems for generalizedcontractive-type mappings on complex-valued metric spaces, Abstract and Applied Analysis,
2013, Article ID 604215, 2013, 6 pages, doi: 10.1155/2013/604215.
[10] P. Kumam, M. Sarwar and M. B. Zada. Fixed point results satisfying rational type contractive conditions in complex valued metric spaces, Annales Mathematicae Silesianae - Seria
Mathematica, 30(2)(2016), 89-110.
[11] T. S. Kumar and R. J. Hussain. Common coupled fixed point theorem for contractive type mappings in closed ball of complex valued metric spaces, Advances in Inequalities and Ap-
plications, 2014(2014), ID 34.
[12] M. A. Kutbi and W. Sintunavarat. On new fixed point results for (alfa; psi ; ceta)-contractive multivalued mappings on alfa-complete metric spaces and their consequences, Fixed Point Theory and Applications, 2015, 2015:2, 15 pages, doi: 10.1186/1687-1812-2015-2.
[13] Z. Mustafa and B. Sims. Some remarks concerning D-metric spaces, Proceedings of the International Conference on Fixed Point Theory and Applications, 9(5)(2004), 189-198.
[14] S. B. Nadler. Multi-valued contraction mappings, Pacific J. Math, 30(2)(1968), 475-488.
[15] S. Phiangsungnoen, W. Sintunavarat and P. Kumam. Common alfa-fuzzy fixed point theorems for fuzzy mappings via betaF -admissible pair, Journal of Intelligent and Fuzzy Systems,
27(5)(2014), 2463-2472.
[16] S. Phiangsungnoen, W. Sintunavarat and P. Kumam. Fuzzy xed point theorems in Hausdorff fuzzy metric spaces, Journal of Inequalities and Applications, 2014, 2014:201, 10 pages,
doi: 10.1186/1029-242X-2014-201.
[17] F. Rouzkard and M. Imdad. Some common fixed point theorems on complex valued metric spaces, Computers and Mathematics with Applications, 64(6)(2012), 1866-1874.
[18] K. P. R. Sastry, G. A. Naidu, T. Bekeshie and M. A. Rahamatulla. A Common Fixed Point Theorem for Four Self Maps in Complex Valued and Vector Valued Metric Spaces,
International Journal of Mathematical Archive (IJMA), 3(7)(2012), 2680-2685.
[19] S. Sedghi, N. Shobe and I. Altun. A Fixed fuzzy point for fuzzy mappings in complete metric spaces, Mathematical Communications, 13(2)(2008), 289-294.
[20] M. Shoaib and M Sarwar. Multivalued Fixed Point Theorems for Generalized Contractions and Their Applications, Journal of Mathematics, 2016, Article ID 5190718, 2016, 8 pages,
doi: 10.1155/2016/5190718
[21] W. Sintunavarat and P. Kumam. Generalized common fixed point theorems in complex valued metric spaces and applications, Journal of Inequalities and Applications, 2012, 2012:84, 12 pages, doi: 10.1186/1029-242X-2012-84.
[22] K. Sitthikul and S. Saejung. Some fixed point theorems in complex valued metric spaces, Fixed Point Theory and Applications, 2012, 2012:189, 11 pages, doi: 10.1186/1687-1812-2012-189.
ID 854965, 2013, 12 pages, doi: 10.1155/2013/854965.
[2] A. Azam and I. Beg. Common Fixed points of fuzzy maps, Mathematical and Computer Modelling, 49(7)(2009), 331-1336.
[3] A. Azam, B. Fisher and M. Khan. Common Fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32(3)(2011), 243-253.
[4] S. Banach. Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math, 3(1)(1922), 133-181.
[5] V. V. Chistyakov. Modular metric spaces, I: basic concepts, Nonlinear Analysis: Theory, Methods & Applications, 72(1)(2010), 1-14.
[6] M. Edelstein. An extension of Banach's contraction principle, Proceedings of the American Mathematical Society, 12(1)(1961), 7-10.
[7] M. Edelstein. On Fixed and periodic points under contractive mappings, Journal of the London Mathematical Society, 37(1)(1962), 74-79.
[8] L. Huang and X. Zhang. Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 332(2)(2007), 1468-1476.
[9] C. Klin-eam and C. Suanoom. Some common fixed-point theorems for generalizedcontractive-type mappings on complex-valued metric spaces, Abstract and Applied Analysis,
2013, Article ID 604215, 2013, 6 pages, doi: 10.1155/2013/604215.
[10] P. Kumam, M. Sarwar and M. B. Zada. Fixed point results satisfying rational type contractive conditions in complex valued metric spaces, Annales Mathematicae Silesianae - Seria
Mathematica, 30(2)(2016), 89-110.
[11] T. S. Kumar and R. J. Hussain. Common coupled fixed point theorem for contractive type mappings in closed ball of complex valued metric spaces, Advances in Inequalities and Ap-
plications, 2014(2014), ID 34.
[12] M. A. Kutbi and W. Sintunavarat. On new fixed point results for (alfa; psi ; ceta)-contractive multivalued mappings on alfa-complete metric spaces and their consequences, Fixed Point Theory and Applications, 2015, 2015:2, 15 pages, doi: 10.1186/1687-1812-2015-2.
[13] Z. Mustafa and B. Sims. Some remarks concerning D-metric spaces, Proceedings of the International Conference on Fixed Point Theory and Applications, 9(5)(2004), 189-198.
[14] S. B. Nadler. Multi-valued contraction mappings, Pacific J. Math, 30(2)(1968), 475-488.
[15] S. Phiangsungnoen, W. Sintunavarat and P. Kumam. Common alfa-fuzzy fixed point theorems for fuzzy mappings via betaF -admissible pair, Journal of Intelligent and Fuzzy Systems,
27(5)(2014), 2463-2472.
[16] S. Phiangsungnoen, W. Sintunavarat and P. Kumam. Fuzzy xed point theorems in Hausdorff fuzzy metric spaces, Journal of Inequalities and Applications, 2014, 2014:201, 10 pages,
doi: 10.1186/1029-242X-2014-201.
[17] F. Rouzkard and M. Imdad. Some common fixed point theorems on complex valued metric spaces, Computers and Mathematics with Applications, 64(6)(2012), 1866-1874.
[18] K. P. R. Sastry, G. A. Naidu, T. Bekeshie and M. A. Rahamatulla. A Common Fixed Point Theorem for Four Self Maps in Complex Valued and Vector Valued Metric Spaces,
International Journal of Mathematical Archive (IJMA), 3(7)(2012), 2680-2685.
[19] S. Sedghi, N. Shobe and I. Altun. A Fixed fuzzy point for fuzzy mappings in complete metric spaces, Mathematical Communications, 13(2)(2008), 289-294.
[20] M. Shoaib and M Sarwar. Multivalued Fixed Point Theorems for Generalized Contractions and Their Applications, Journal of Mathematics, 2016, Article ID 5190718, 2016, 8 pages,
doi: 10.1155/2016/5190718
[21] W. Sintunavarat and P. Kumam. Generalized common fixed point theorems in complex valued metric spaces and applications, Journal of Inequalities and Applications, 2012, 2012:84, 12 pages, doi: 10.1186/1029-242X-2012-84.
[22] K. Sitthikul and S. Saejung. Some fixed point theorems in complex valued metric spaces, Fixed Point Theory and Applications, 2012, 2012:189, 11 pages, doi: 10.1186/1687-1812-2012-189.
Downloads
Published
2017-04-13
Issue
Section
Чланци