• Mladen Amović University of Banja Luka
  • Ivana Janković University of Banja Luka



The need to produce organic food and increase yields plays a significant role in the planning of agricultural production and the economy of the state in general. Monitoring and modeling of all stages of production implies the establishment of smart agriculture concepts based on the use of remote sensing results. This work procedure implies abandoning the classic homogenization in the approach to the cultivation of agricultural land and provides the possibility of anticipating problems and timely action, which should provide an increase in yield with environmental production conditions.


Hossen, M.A., Diwakar, P.K. & Ragi, S. Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS. Sci Rep 11, 12693 (2021).

Tilly, N.; Bareth, G. Estimating Nitrogen from Structural Crop Traits at Field Scale—A Novel Approach Versus Spectral Vegetation Indices. Remote Sens. 2019, 11, 2066.

Colorado, J.D.; Cera-Bornacelli, N.; Caldas, J.S.; Petro, E.; Rebolledo, M.C.; Cuellar, D.; Calderon, F.; Mondragon, I.F.; Jaramillo-Botero, A. Estimation of Nitrogen in Rice Crops from UAV-Captured Images. Remote Sens. 2020, 12, 3396.

Sun, D.; Cen, H.;Weng, H.;Wan, L.; Abdalla, A.; El-Manawy, A.I.; Zhu, Y.; Zhao, N.; Fu, H.; Tang, J.; et al. Using hyperspectral analysis as a potential high throughputphenotyping tool in GWAS for protein content of rice quality. Plant Methods 2019, 15, 54.

Lu, Ning & Wang, Wenhui & Zhang, Qiaofeng & Li, Dong & Yao, Xia & Tian, Yongchao & Zhu, Yan & Cao, Qiang & Baret, Fred & Liu, Shouyang & Cheng, Tao. (2019). Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Frontiers in Plant Science. 10. 1601. 10.3389/fpls.2019.01601.

Martine Guerif, Vianney Houlès, Frédéric Baret. Remote sensing and detection of nitrogen status in crops. Application to precise nitrogen fertilization. 4. International Symposium on Intelligent Information Technology in Agriculture, Oct 2007, Beijing, China. 19 p. ffhal-02824189f.

Atzberger, C.; Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sensing 2013.

Hatfield, J.L.; Gitelson, A.A; Schepers, S.J; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agronomy Journal 2008., April 2022.

Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C. Estimating Global Cropland Extent with Multi-year MODIS Data. Remote Sensnig 2010.

Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sensnig of Environment 2004.

Lloyd, D.; A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing 1990.

Schwartz, M.D.; Reed, B.C.; White, M.A. Assesing satellite-derived start of season measures in the conerminous USA. International Journal of Climatology 2002.

Moulin, S.; Kergoat, L.; Viovy, N.; Dedieu, G.G. Global scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate 1997.

Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. Journal of Vegetation Science 1994.

Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A.; Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 2003.

Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 2002.

Vermote, E.F.; Saluous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to near infrared: First results. Remote Sensing of Environment 2002.

Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sensing of Environment 2002.

Csornai, G.; Wirnhardt, Cs.; Suba, Zs.; Nador, G.; Tikasz, L.; Martinovich, L.; Koscis, A.; Zelei, Gy.; Laszlo, I.; Bognar, E. CROPMON: Hungarian crop production forecast by remote sensing. ISPRS Archives XXXVI-8/W48 Workshop proceedings: Remote Sensing support to crop yield forecast and are estimation 2007.

Doraiswamy, P.C.; Akhmedov, B.; Beard, L.; Stern, A.; Mueller, R. Operational prediciton of crop yields using MODIS data and products. ISPRS Archives XXXVI-8/W48 Workshop proceedings: Remote Sensing support to crop yield forecast and are estimation 2007.

Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensnig and surface parameters. International Journal of Applied Earth Observation and Geoinformation 2006.

Schelmmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinform. 2013, 25, 47–54.

Rouse, J.W.; Haas, R.H.; Chell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS Symposium, NASA SP351, 1973.

Large, E. G. (1954): Growth stages in cereals: Illustration of the Feeke's scale. Pl. Path. 3: 128-129.

Haun, J. R. (1973): Visual quntification of wheat development. Agron. J. 65: 116-119.

Zadoks, J. C., Chang, T.T., Konzak, C. F. (1974): A decimal code for the growth stages of cereals. Weed Res., 14: 415-421.

Lancaster, P. D., Bleihlder, H., Van der Boom, T., Langeladdke, P., Stauss, R., Weber, E., Witzenberger, A. (1991): A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119: 561-601.

Кондић, Д. (2015): Житарице; морфо-физиологија, репродуктивна биологија, онтогенеза, биолошка контрола и моделиранје продуктивности. Пољопривредни факултет Универзитета у Бањој Луци. ISBN 978-99938-93-5, стр. 227.

Rickman, R. W., Klepper, E.L. (1991): Tillering in wheat. In T. Hodges, ed. Predicting crop phenology, p. 73-83. Boca Raton, FL, USA, CRC Press.

Cutforth, H. W., Jame, Y. W., Jefferson, P. G. (1992): Effect of temperature, vernalisation and water stress on phyllochron and final main-stem number of HY320 and Neepawa spring wheats. Can. J. Plant Sci., 72: 1141-1151.

Longnecker, N., Kirby, E. J. M, Robson, A. (1993): Leaf emergence, tiller growth, and apical development of nitrogen-deficient spring wheat. Crop Sci., 33: 154-16




How to Cite