HEAT CONDUCTIVITY OF SOME LAYERED STRUCTURES

Authors

  • S. K. Jaćimovski The Academy of Criminalistic and Police Studies, Zemun – Belgrade, Serbia
  • D. I. Raković Faculty of Electrical Engineering, Belgrade, Serbia
  • I. J. Šetrajčić University of Novi Sad, Faculty of Sciences, Department of Physics, Vojvodina – Serbia
  • S. Armaković University of Novi Sad, Faculty of Sciences, Department of Physics, Vojvodina – Serbia
  • V. D. Sajfert University of Novi Sad, Technical Faculty „Mihajlo Pupin“, Zrenjanin, Vojvodina – Serbia

DOI:

https://doi.org/10.7251/COM1201081J

Abstract

Callaway model with Debye’s approximation of phonon states density is used to determine heat conductivity of some layered structures of Nb1-x Snx Se2 type. In total relaxation time, a term proportional to squared frequency, typical for layered structures, is kept. Electronic heat conductivity is determined by Wiedemann–Franz law and BRT model for superconductors. In both cases, heat conductivity is determined numerically in the range of 2 – 200 K. Results correlate well with experimental data.

References

[1] J. Bardeen, G. Rickayzen and L. Tewordt, Theory of the Thermal Conductivity of Superconductors, Phys. Rev. 113-4 (1959) 982-994.

[2] V. I. Beletskii, О. А. Gavrenko, B. A. Merisov, М. А. Obolenskii, А. V. Sologubenko, G. Ya. Khadzay, H. B. Chashka, Thermal conductivity and electrical resistivity of layered compound Nb1-xSnxSe2, FNT, T.24, No.4 (1998) 360-366.

[3] J. Callaway, Quantum Theory of the Solid State, second edition, Academic Press, Inc., Boston 1991, 168-188.

[4] B. T. Geilikman, Research in low temperature physics, Atomizdat, Moscow 1977.

[5] M. Kaveh, M. F. Cherry and M. Weger, New Mechanism for the electrical resisitivity of layer compounds:TiS2, J. Phys. C14, 1981., pp. L789-L797

[6] T. M. Tritt, Thermal Conductivity-Theory, Properties and Applications, Kluwer Academic/Plenum Publishers, New York 2004.

Downloads

Published

2012-10-19