NANOTECHNOLOGY MATERIALS FOR SOLAR ENERGY CONVERSION

Authors

  • Svetlana Pelemiš University in Istočno Sarajevo, Faculty of Technology Zvornik, Karakaj 34, 75400 Zvornik, Republic of Srpska, B&H
  • Igor Hut Innovation Centre of Faculty of Mechanical Engineering, University of Belgrade, Serbia

DOI:

https://doi.org/10.7251/COMEN1302145P

Abstract

Nanotechnology is a common word these days, although only 15 years ago it was a quite obscure term used almost exclusively in scientific community.  It is a fact that nanotechnology is widely present today with numerous applications, especially regarding novel materials. This is a technology that draws a lot of attention not only in the scientific community but also among investors, governments and industry. There is a great deal of expectations connected with it and especially, amongst others, concerning sustainable energy production. This paper briefly explores some of possible implementations of nanotechnology for new and improved energy conversion methods, considering a need for this to be done without doing harm to our environment. Focus is placed on advanced photovoltaic and hydrogen production technology.

References

[1] F. L. de Souza and E. R. Leite (eds.), Nanoenergy, DOI: 10.1007/978-3-642-31736-1_2, _ Springer-Verlag Berlin Heidelberg 2013

[2] I. Hut, D. Ninković, Nanotechnology implementations for sustainable energy production – current trends and future developments, IEEP’11, Proceedings (CD-ROM, VII Energetska efikasnost – oblasti / Energy efficiency – different areas), Kopaonik, Serbia2011.

[3] E. Serrano, G. Rus, and J. García-Martínez, Nanotechnology for sustainable energy, Renewable and Sustainable Energy Reviews, Vol. 13−9 (2009) 2373−2384.

[4] P. Yianoulis, M. Giannouli, Thin Solid Films and Nanomaterials for Solar Energy Conver-sion and Energy Saving Applications, Journal of Nano Research Vol. 2 (2008) 49−60. Online available since 2008/Aug/07 at www.scientific.net © (2008) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/JNanoR.2.49

[5] O. Morton, Solar energy: Silicon Valley sunrise. Nature, Vol. 443 (7107) (2006) 19−22.

[6] N. S. Lewis, and D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, Vol. 103−43 (2006) 15729−15735.

[7] Exergy (available energy) Flow Charts. [cited 2011 02.06.]; Available from: http://gcep.stanford.edu/research/exergycharts.html.

[8] K. R. Catchpole, Nanostructures in photovoltaics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364−1849 (2006) 3493−3503.

[9] R. T. Ross and A.J. Nozik, Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, Vol. 53−5 (1982) 3813−3818.

[10] M. S. A. Abdel-Mottaleb,Frank N¨uesch, Mohamed M. S. A. Abdel-Mottaleb, Solar Energy and Nanomaterials for Clean Energy Development, Hindawi Publishing Corporation International Journal of Photoenergy, Volume 2009, Article ID 525968, 2 pages doi:10.1155/2009/525968

[11] M. A. Halim, Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell, Nanomaterials, Vol. 3 (2013) 22−47; doi:10.3390/nano3010022.

[12] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. Vol. 58 (1991) 1982–1984.

[13] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, Fabrication of bulk heterojunction plastic solar cells by screen printing, Appl. Phys. Lett. Vol. 79 (2001) 2996–2998.

[14] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M; Nielsen, K.Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature, Vol. 401 (1999) 685–688.

[15] M. Dresselhaus, M. V. Buchanan, and G. Crabtree, The Hydrogen Economy, Physics Today; Vol. 57−12 (2004) p. Medium: X; Size: 39.

[16] S. Takabayashi, R. Nakamura, and Y. Nakato, A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. Journal of Photochemistry and Photobiology A Chemistry, Vol. 166(1−3): (2004) 107−113.

[17] M. Ni, et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, Vol. 11(3) (2007) 401−425.

[18] D. Lj. Mirjanić, J. P. Setrajčić, Nanotechnological materials for solar cells, UNITECH III, Gabrovo 2012, 440−442.

[19] T. M. Pavlović, D.Lj. Mirjanić, D. D. Milosavljević, D. S. Pirsl, Application of contemporary materials in solar energetics, UNITECH IV, Gabrovo 2013, 371−376.

Downloads

Published

2013-12-01