THERMAL CONDUCTANCE OF HELICALLY COILED CARBON NANOTUBES

Authors

  • Zoran Popović Faculty of Physics, University of Belgrade, 11001 Belgrade, Serbia
  • Milan Damnjanović Faculty of Physics, University of Belgrade, 11001 Belgrade, Serbia
  • Ivanka Milošević Faculty of Physics, University of Belgrade, 11001 Belgrade, Serbia

DOI:

https://doi.org/10.7251/COMEN1401037P

Abstract

Thermal conductivity is one of the most interesting physical properties of carbon nanotubes. This quantity has been extensively explored experimentally and theoretically using different approaches like: molecular dynamics simulation, Boltzmann-Peierls phonon transport equation, modified wave-vector model etc. Results of these investigations are of great interest and show that carbon- based materials, graphene and nanotubes in particular, show high values of thermal conductivity. Thus, carbon nanotubes are a good candidate for the future applications as thermal interface materials.

In this paper we present the results of thermal conductance s of a model of helically coiled carbon nanotubes (HCCNTs), obtained from phonon dispersion relations. Calculation of s of HCCNTs is based on the Landauer theory where phonon relaxation rate is obtained by simple Klemens-like model.

References

[1] P. G. Klemens, D. F. Pedraza, Thermal conductivity of graphite in the basal plane, Carbon, Vol. 32 (1994) 735−741.

[2] I. Milošević, Z. P. Popović, M. Damnjanović, Structure and stability of coiled carbon nanotubes, Phys. Stat. Solidi B, Vol. 249 (2012) 2442−2445.

[3] Z. P. Popović, M. Damnjanović, I. Milošević, Carbon nanocoils: structure and stability, Contemporary Materials, Vol. III−1 (2012) 51−54.

[4] I. Laszlo, A. Rassat, The geometric structure of deformed nanotubes and the topological coordinates, J. Chem. Comput. Sci., Vol. 43 (2003) 519−524

[5] I. Laszlo, A. Rassat, P. W. Fowler, A. Graovac, Topological coordinates for toroidal structures, Chemical Physics Letters, Vol. 342 (2001) 369−374.

[6] M. Damnjanović, I. Milošević, Line Groups in Physics, Springer-Verlag, Berlin, 2010.

[7] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, Vol. 14 (2002) 783−802.

[8] M. Mohr, M. Machon, C. Thomsen, I. Milošević, M. Damnjanović, Mixing of the fully symmetric vibrational modes in carbon nanotubes, Phys. Rev. B, Vol. 75 (2007) 195401.

[9] Z. P. Popović, M. Damnjanović, I. Milošević, Anisotropy of thermal expansion of helically coiled carbon nanotubes, Phys. Stat. Solidi B, Vol. 250 (2013) 2535−2538.

[10] D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys. Condens. Matter, Vol. 24 (2012) 233203 (18 pp).

[11] T. Yamamoto, S. Konabe, J. Shiomi, S. Maruyama, Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes, Appl. Phys. Express, Vol. 2 (2009) 095003 (3 pp).

[12] I. Savić, N. Mingo, D. A. Stewart, Phonon Transport in Isotope-Disorder Carbon and Boron-Nitride nanotubes. Is Localization Observable?, Phys. Rev. Lett., Vol. 101 (2008) 165502.

[13] Supriyo Datta, Quantum Transport: Atom to transistor, Cambridge 2005.

[14] T. Yamamoto, S. Watanabe, K. Watanabe, Universal Features of Quantized Thermal Conductance of Carbon Nanotubes, Phys. Rev. Lett., Vol. 92 (2004) 075502 (4 pp).

Downloads

Published

2014-09-24