EQUILIBRIUM MODE DISTRIBUTION IN W-TYPE GLASS OPTICAL FIBERS
DOI:
https://doi.org/10.7251/COMEN1401051SAbstract
Power flow equation is used to calculate equilibrium mode distribution in W-type glass optical fibers. It has been shown how the coupling length for achieving the equilibrium mode distribution in W-type glass optical fibers varies with the depth and width of the intermediate layer and coupling strength for different widths of launch beam distribution. W-type optical fibers have shown effectiveness in reducing modal dispersion and bending loss.
References
[1] E. J. Tyler, M. Webster, R. V. Penty, I. H. White, S. Yu, J. Rorison, Subcarrier modulated transmission of 2.5 Gb/s over 300 m of 62.5-μm-core diameter multimode fiber, IEEE Photon. Tec-hnol. Lett., Vol. 14 (2002) 17431745.
[2] K. M. Patel, S. E. Ralph, Enhanced multimode fiber link performance using a spatially resolved receiver, IEEE Photon. Technol. Lett., Vol. 14 (2002) 393395.
[3] X. Zhao, F. S. Choa, Demonstration of 10 Gb/s transmission over 1.5-km-long multimode fiber using equalization techniques, IEEE Photon. Technol. Lett., Vol. 14 (2002) 11871189.
[4] J. S. Abbott, G. E. Smith, C. M. Truesdale, Multimode fiber link dispersion compensator, U. S. Patent 6 363 195, 2002.
[5] T. Ishigure, M. Kano, Y. Koike, Which is more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?, J. Lightwave Technol., Vol. 18 (2000) 959–965.
[6] K. Mikoshiba, H. Kajioka, Transmission characteristics of multimode W-type optical fiber: experimental study of the effect of the intermediate layer, Appl. Opt., Vol. 17 (1978) 2836–2841.
[7] T. Tanaka, S. Yamada, M. Sumi, K. Mikoshiba, Microbending losses of doubly clad (W-type) optical fibers, Appl. Opt., Vol. 18 (1977) 2391–2394.
[8] W. Daum, J. Krauser, P E. Zamzow, O. Ziemann, Polymer Optical Fibers for Data Communication, Springer , Berlin, 2002.
[9] T. Yamashita, M. Kagami, Fabrication of light-induced self-written waveguides with a W-shaped refractive index profile, J. Lightwave Technol., Vol. 23 (2005) 2542–2548.
[10] M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, J. Zubía, Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers, J. Lightwave Technol., Vol. 20 (2002) 1160–1164.
[11] K. Takahashi, T. Ishigure, Y. Koike, Index profile design for high-bandwidth W-shaped plastic optical fiber, J. Lightwave Technol., Vol. 24 (2006) 2867–2876.
[12] J. Dugas and G. Maurel, Mode-coupling processes in polymethyl methacrylate-core optical fibers, Appl. Opt., Vol. 31 (1992) 5069–5079.
[13] D. Gloge, Optical power flow in multimode fibers, Bell Syst. Tech. J., Vol. 51 (1972) 1767–1783.
[14] G. Jiang, R. F. Shi, A. F. Garito, Mode coupling and equilibrium mode distribution conditions in plastic optical fibers, IEEE Photon. Technol. Lett., Vol 9 (1997) 1128–1130.
[15] M. Rousseau, L. Jeunhomme, Numerical solution of the coupled-power equation in step index optical fibers, IEEE Trans. Microwave Theory Tech., Vol. 25 (1977) 577–585.
[16] T. P. Tanaka, S. Yamada, Numerical solution of power flow equation in multimode W-type optical fibers, Appl. Opt., Vol. 19 (1980) 1647–1652.
[17] T. P. Tanaka, S. Yamada, Steady-state characteristics of multimode W-type fibers, Appl. Opt., Vol. 18 (1979) 3261–3264.
[18] L. Jeunhomme, M. Fraise, J. P. Pocholle, Propagation model for long step-index optical fibers, Appl. Opt., Vol. 15 (1976) 3040–3046.
[19] A. Djordjevich, S. Savović, Numerical solution of the power flow equation in step index plastic optical fibers, J. Opt. Soc. Am., Vol. B 21 (2004) 1437–1442.
[20] S. Savović, A. Simović, A. Djordjevich, Explicit finite difference solution of the power flow equation in W-type optical fibers, Opt. Laser Techn., Vol. 44 (2012) 1786–1790.
[21] J. D. Anderson, Computational Fluid Dynamics, Mc Graw-Hill, New York, 1995.
[22] A. Simović, A. Djordjevich, S. Savović, Influence of width of intermediate layer on power distribution in W-type optical fibers, Appl. Opt., Vol. 51 (2012) 4896–4901.
[23] F. Poli, J. Lægsgaard, D. Passaro, A. Cucinotta, S. Selleri, J. Broeng, Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers, J. Lightwave Techn., Vol. 27 (2009) 4935–4942.
[2] K. M. Patel, S. E. Ralph, Enhanced multimode fiber link performance using a spatially resolved receiver, IEEE Photon. Technol. Lett., Vol. 14 (2002) 393395.
[3] X. Zhao, F. S. Choa, Demonstration of 10 Gb/s transmission over 1.5-km-long multimode fiber using equalization techniques, IEEE Photon. Technol. Lett., Vol. 14 (2002) 11871189.
[4] J. S. Abbott, G. E. Smith, C. M. Truesdale, Multimode fiber link dispersion compensator, U. S. Patent 6 363 195, 2002.
[5] T. Ishigure, M. Kano, Y. Koike, Which is more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?, J. Lightwave Technol., Vol. 18 (2000) 959–965.
[6] K. Mikoshiba, H. Kajioka, Transmission characteristics of multimode W-type optical fiber: experimental study of the effect of the intermediate layer, Appl. Opt., Vol. 17 (1978) 2836–2841.
[7] T. Tanaka, S. Yamada, M. Sumi, K. Mikoshiba, Microbending losses of doubly clad (W-type) optical fibers, Appl. Opt., Vol. 18 (1977) 2391–2394.
[8] W. Daum, J. Krauser, P E. Zamzow, O. Ziemann, Polymer Optical Fibers for Data Communication, Springer , Berlin, 2002.
[9] T. Yamashita, M. Kagami, Fabrication of light-induced self-written waveguides with a W-shaped refractive index profile, J. Lightwave Technol., Vol. 23 (2005) 2542–2548.
[10] M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, J. Zubía, Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers, J. Lightwave Technol., Vol. 20 (2002) 1160–1164.
[11] K. Takahashi, T. Ishigure, Y. Koike, Index profile design for high-bandwidth W-shaped plastic optical fiber, J. Lightwave Technol., Vol. 24 (2006) 2867–2876.
[12] J. Dugas and G. Maurel, Mode-coupling processes in polymethyl methacrylate-core optical fibers, Appl. Opt., Vol. 31 (1992) 5069–5079.
[13] D. Gloge, Optical power flow in multimode fibers, Bell Syst. Tech. J., Vol. 51 (1972) 1767–1783.
[14] G. Jiang, R. F. Shi, A. F. Garito, Mode coupling and equilibrium mode distribution conditions in plastic optical fibers, IEEE Photon. Technol. Lett., Vol 9 (1997) 1128–1130.
[15] M. Rousseau, L. Jeunhomme, Numerical solution of the coupled-power equation in step index optical fibers, IEEE Trans. Microwave Theory Tech., Vol. 25 (1977) 577–585.
[16] T. P. Tanaka, S. Yamada, Numerical solution of power flow equation in multimode W-type optical fibers, Appl. Opt., Vol. 19 (1980) 1647–1652.
[17] T. P. Tanaka, S. Yamada, Steady-state characteristics of multimode W-type fibers, Appl. Opt., Vol. 18 (1979) 3261–3264.
[18] L. Jeunhomme, M. Fraise, J. P. Pocholle, Propagation model for long step-index optical fibers, Appl. Opt., Vol. 15 (1976) 3040–3046.
[19] A. Djordjevich, S. Savović, Numerical solution of the power flow equation in step index plastic optical fibers, J. Opt. Soc. Am., Vol. B 21 (2004) 1437–1442.
[20] S. Savović, A. Simović, A. Djordjevich, Explicit finite difference solution of the power flow equation in W-type optical fibers, Opt. Laser Techn., Vol. 44 (2012) 1786–1790.
[21] J. D. Anderson, Computational Fluid Dynamics, Mc Graw-Hill, New York, 1995.
[22] A. Simović, A. Djordjevich, S. Savović, Influence of width of intermediate layer on power distribution in W-type optical fibers, Appl. Opt., Vol. 51 (2012) 4896–4901.
[23] F. Poli, J. Lægsgaard, D. Passaro, A. Cucinotta, S. Selleri, J. Broeng, Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers, J. Lightwave Techn., Vol. 27 (2009) 4935–4942.
Downloads
Published
2014-09-25
Issue
Section
Articles