• Zoran Ivić University of Belgrade, „Vinča” Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia
  • Nikos Lazarides Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion, Greece
  • Giorgios Tsironis Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion, Greece Department of Physics, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan



We propose a novel mechanism of light manipulation by using the quantum metamaterial which consists of a large number of linearly arranged superconducting charge qubits. The experimental confirmation of this idea may open up a new way to potentially powerful quantum computing.


[1] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp., Vol. 10−4 (1968) 509–14.

[2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett., Vol. 84−18 (2000) 4184–7.

[3] S. M. Anlage. The physics and applications of the superconducting metamaterials. J. Opt., Vol. 13 (2011) 024001−10.

[4] Yu. A. Pashkin, O. Astavief, T. Yamamoto, Y. Nakamura, and J. S. Tsai, Josephson charge qubits: a brief review, Quantum Inf. Process, Vol. 8 (2009) 55−80.

[5] P. Jung, A. V. Ustinov, and S. M. Anlage. Progress in superconducting metamaterials. Supercond. Sci. Technol., Vol. 27 (2014) 073001 (13pp).

[6] A. L. Rakhmanov, A. M. Zagoskin, S. Savel'ev, and F. Nori. Quantum metamaterials: Electromagnetic waves in a Josephson qubit line. Phys. Rev. B, Vol. 77 (2008) 144507 [7 pages].

[7] A. Shvetsov, A. M. Satanin, F. Nori, S. Savel'ev, and A. M. Zagoskin, Quantum metamaterial without local control., Phys. Rev. B, Vol. 87 (2013) 235410.

[8] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys., Vol. 86−1 (2014) 153−185.

[9] G. S. Paraoanu, Recent progress in quantum simulation using superconducting circuits. J. Low Temp. Phys., DOI 10.1007/s10909-014-1175-8:1-22, 2014.

[10] S. L. McCall and E. L. Hahn. Self-induced transparency by pulsed coherent light. Phys. Rev. Lett., Vol. 18−21 (1967) 908−911.

[11] E. M. Belenov and I. A. Poluektov, Coherence effects in the propagation of an ultrashort light pulse in a medium with two-photon resonance absorption, Sov. Phys. JETP, Vol. 29−4 (1969) 754.

[12] S. John and V. I. Rupasov, Quantum self-induced transparency in frequency gap media, Europhys. Lett., Vol. 46−3 (1999) 326−331.

[13] Q. Han Park and R. W. Boyd, Modification of self-induced transparency by a coherent control field, Phys. Rev. Lett., Vol. 86−13 (2001) 2774−2777.

[14] K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett., Vol. 66−20 (1991) 2593–2596.

[15] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett., Vol. 10−4 (2010) 1103–1107.

[16] I. Bloch, J. Dalibard, and S. Nascimbéne, Quantum simulations with ultracold quantum gases, Nature Phys., Vol. 8 (2012) 267−276.