LIGHT MANIPULATION BY QUANTUM METAMATERIALS
DOI:
https://doi.org/10.7251/COMEN1402186IAbstract
We propose a novel mechanism of light manipulation by using the quantum metamaterial which consists of a large number of linearly arranged superconducting charge qubits. The experimental confirmation of this idea may open up a new way to potentially powerful quantum computing.
References
[1] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp., Vol. 10−4 (1968) 509–14.
[2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett., Vol. 84−18 (2000) 4184–7.
[3] S. M. Anlage. The physics and applications of the superconducting metamaterials. J. Opt., Vol. 13 (2011) 024001−10.
[4] Yu. A. Pashkin, O. Astavief, T. Yamamoto, Y. Nakamura, and J. S. Tsai, Josephson charge qubits: a brief review, Quantum Inf. Process, Vol. 8 (2009) 55−80.
[5] P. Jung, A. V. Ustinov, and S. M. Anlage. Progress in superconducting metamaterials. Supercond. Sci. Technol., Vol. 27 (2014) 073001 (13pp).
[6] A. L. Rakhmanov, A. M. Zagoskin, S. Savel'ev, and F. Nori. Quantum metamaterials: Electromagnetic waves in a Josephson qubit line. Phys. Rev. B, Vol. 77 (2008) 144507 [7 pages].
[7] A. Shvetsov, A. M. Satanin, F. Nori, S. Savel'ev, and A. M. Zagoskin, Quantum metamaterial without local control., Phys. Rev. B, Vol. 87 (2013) 235410.
[8] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys., Vol. 86−1 (2014) 153−185.
[9] G. S. Paraoanu, Recent progress in quantum simulation using superconducting circuits. J. Low Temp. Phys., DOI 10.1007/s10909-014-1175-8:1-22, 2014.
[10] S. L. McCall and E. L. Hahn. Self-induced transparency by pulsed coherent light. Phys. Rev. Lett., Vol. 18−21 (1967) 908−911.
[11] E. M. Belenov and I. A. Poluektov, Coherence effects in the propagation of an ultrashort light pulse in a medium with two-photon resonance absorption, Sov. Phys. JETP, Vol. 29−4 (1969) 754.
[12] S. John and V. I. Rupasov, Quantum self-induced transparency in frequency gap media, Europhys. Lett., Vol. 46−3 (1999) 326−331.
[13] Q. Han Park and R. W. Boyd, Modification of self-induced transparency by a coherent control field, Phys. Rev. Lett., Vol. 86−13 (2001) 2774−2777.
[14] K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett., Vol. 66−20 (1991) 2593–2596.
[15] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett., Vol. 10−4 (2010) 1103–1107.
[16] I. Bloch, J. Dalibard, and S. Nascimbéne, Quantum simulations with ultracold quantum gases, Nature Phys., Vol. 8 (2012) 267−276.
[2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett., Vol. 84−18 (2000) 4184–7.
[3] S. M. Anlage. The physics and applications of the superconducting metamaterials. J. Opt., Vol. 13 (2011) 024001−10.
[4] Yu. A. Pashkin, O. Astavief, T. Yamamoto, Y. Nakamura, and J. S. Tsai, Josephson charge qubits: a brief review, Quantum Inf. Process, Vol. 8 (2009) 55−80.
[5] P. Jung, A. V. Ustinov, and S. M. Anlage. Progress in superconducting metamaterials. Supercond. Sci. Technol., Vol. 27 (2014) 073001 (13pp).
[6] A. L. Rakhmanov, A. M. Zagoskin, S. Savel'ev, and F. Nori. Quantum metamaterials: Electromagnetic waves in a Josephson qubit line. Phys. Rev. B, Vol. 77 (2008) 144507 [7 pages].
[7] A. Shvetsov, A. M. Satanin, F. Nori, S. Savel'ev, and A. M. Zagoskin, Quantum metamaterial without local control., Phys. Rev. B, Vol. 87 (2013) 235410.
[8] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys., Vol. 86−1 (2014) 153−185.
[9] G. S. Paraoanu, Recent progress in quantum simulation using superconducting circuits. J. Low Temp. Phys., DOI 10.1007/s10909-014-1175-8:1-22, 2014.
[10] S. L. McCall and E. L. Hahn. Self-induced transparency by pulsed coherent light. Phys. Rev. Lett., Vol. 18−21 (1967) 908−911.
[11] E. M. Belenov and I. A. Poluektov, Coherence effects in the propagation of an ultrashort light pulse in a medium with two-photon resonance absorption, Sov. Phys. JETP, Vol. 29−4 (1969) 754.
[12] S. John and V. I. Rupasov, Quantum self-induced transparency in frequency gap media, Europhys. Lett., Vol. 46−3 (1999) 326−331.
[13] Q. Han Park and R. W. Boyd, Modification of self-induced transparency by a coherent control field, Phys. Rev. Lett., Vol. 86−13 (2001) 2774−2777.
[14] K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett., Vol. 66−20 (1991) 2593–2596.
[15] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett., Vol. 10−4 (2010) 1103–1107.
[16] I. Bloch, J. Dalibard, and S. Nascimbéne, Quantum simulations with ultracold quantum gases, Nature Phys., Vol. 8 (2012) 267−276.
Downloads
Published
2014-12-15
Issue
Section
Articles