INTERNAL ENERGY OF HEISENBERG SPIN-1/2 J1 - J2 ANTIFERROMAGNET ON THE BODY-CENTERED-CUBIC LATTICE IN TYABLIKOV APPROXIMATION
DOI:
https://doi.org/10.7251/COMEN1402190KAbstract
Magnetic properties of spin ½ J1-J2 quantum Heisenberg antiferromagnet on body centered cubic lattice are investigated in the paper. By using two-time temperature Green's functions, sublattice magnetization and critical temperature depending on the frustration ratio J2/ J1 are obtained in both stripe and Neel phase. The analysis of ground state sublattice magnetization and internal energy indicates the first order phase transition from Neel to stripe phase for 0.7< J2/ J1< 0.8, which is in agreement with previous studies.
References
[1] T. H. Diep, Frustrated Spin Systems, 1st ed. World Scientific, Singapore 2004.
[2] X. G. Wen, Quantum Field Theory of Many Body Systems, Oxford University Press, 2007.
[3] S. Jin, A. Sen, A.W. Sandvik, Ashkin-Teller Criticality and Pseudo-First-Order Behavior in a Frustrated Ising Model on the Square Lattice, Phys. Rev. Lett., Vol. 108 (2012) 045702.
[4] G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys., Vol. 83 (2011) 1589−1652.
[5] D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys., Vol. 59 (2010) 803−1061.
[6] J. S. Smart, Effective Field Theories of Magnetism, Saunders, Philadelphia 1966.
[7] J. Oitmaa and W. Zhang, Phase diagram of the bcc S-1/2 Heisenberg antiferromagnet with first and second neighbor exchange, Phys. Rev. B, Vol. 69 (2004) 064416.
[8] R. Schmidt, J. Schulenburg, J. Richter, and D.D. Betts, Spin-1/2 model on the body-centered cubic lattice, Phys. Rev. B, Vol. 66 (2002) 224406.
[9] K. Majumdar and T. Datta, Non-linear spin wave theory results for the frustrated S-1/2 Hei-senberg antiferromagnet on a body-centered cubic lattice, J. Phys. Cond. Matt., Vol. 21 (2009) 046001.
[10] K. Majumdar, Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Hei-senberg antiferromagnet on a stacked square lattice, J. Phys. Cond. Matt., Vol. 23 (2011) 406004.
[11] D. N. Zubarev, Double-time Green functions in statistical physics, Sov. Phys. Usp., Vol. 3 (1960) 320−342.
[12] S. V. Tyablikov, The Methods in the Quantum Theory of Magnetism, Plenum Press, New York 1967.
[13] M. Manojlović, M. Pavkov-Hrvojević, M. Škrinjar, M. Pantić, D. Kapor, S. Stojanović, Spin-wave dispersion and transition temperature in the cuprate antiferromagnet La2CuO4, Phys. Rev. B, Vol. 68 (2003) 014435.
[14] S. Radošević, M. Pantić, M. Rutonjski, D. Kapor, M. Škrinjar, Magnetic properties of quasi two-dimensional antiferromagnet Rb2MnCl4 with XXZ interaction anisotropy, Eur. Phys. J. B, Vol. 68 (2009) 511−517.
[15] W. Nolting, A. Ramakanth, Quantum Theory of Magnetism, Springerr-Verlag, Berlin 2009.
[16] P. Frobrich, P.J. Kuntz, Many-body Green's function theory of Heisenberg films, Physics Reports, Vol. 432 (2006) 223−304.
[17] M. Rutonjski, S. Radošević, M. Škrinjar, M. Pavkov-Hrvojević, D. Kapor, M. Pantić, Temperature dependence of sublattice magnetization in quasi-two-dimensional S=1/2 cuprate antiferromagnets: Green’s function approach, Phys. Rev. B, Vol. 76 (2007) 172506.
[18] S. Radošević, M. Rutonjski, M. Pantić, M. Pavkov-Hrvojević, D. Kapor, M. Škrinjar, The Néel temperature of a D-dimensional bcc Heisenberg antiferromagnet, Solid State Commun., Vol. 151 (2011) 1753−1757.
[19] M. Rutonjski, S. Radošević, M. Pantić, M. Pavkov-Hrvojević, D. Kapor, M. Škrinjar, Magnon specific heat of high-Tc parent compounds La2CuO4 and YBa2Cu3O6: Green’s function ap-proach, Solid State Commun., Vol.
151 (2011) 518−522.
[20] M. R. Pantić, D. V. Kapor, S. M. Radošević, and P. M. Mali, Phase diagram of quantum Heisenberg J1–J2 antiferromagnet on the body-centered-cubic lattice in random phase approximation, Solid State Commun., Vol. 182 (2014) 55−58.
[2] X. G. Wen, Quantum Field Theory of Many Body Systems, Oxford University Press, 2007.
[3] S. Jin, A. Sen, A.W. Sandvik, Ashkin-Teller Criticality and Pseudo-First-Order Behavior in a Frustrated Ising Model on the Square Lattice, Phys. Rev. Lett., Vol. 108 (2012) 045702.
[4] G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys., Vol. 83 (2011) 1589−1652.
[5] D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys., Vol. 59 (2010) 803−1061.
[6] J. S. Smart, Effective Field Theories of Magnetism, Saunders, Philadelphia 1966.
[7] J. Oitmaa and W. Zhang, Phase diagram of the bcc S-1/2 Heisenberg antiferromagnet with first and second neighbor exchange, Phys. Rev. B, Vol. 69 (2004) 064416.
[8] R. Schmidt, J. Schulenburg, J. Richter, and D.D. Betts, Spin-1/2 model on the body-centered cubic lattice, Phys. Rev. B, Vol. 66 (2002) 224406.
[9] K. Majumdar and T. Datta, Non-linear spin wave theory results for the frustrated S-1/2 Hei-senberg antiferromagnet on a body-centered cubic lattice, J. Phys. Cond. Matt., Vol. 21 (2009) 046001.
[10] K. Majumdar, Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Hei-senberg antiferromagnet on a stacked square lattice, J. Phys. Cond. Matt., Vol. 23 (2011) 406004.
[11] D. N. Zubarev, Double-time Green functions in statistical physics, Sov. Phys. Usp., Vol. 3 (1960) 320−342.
[12] S. V. Tyablikov, The Methods in the Quantum Theory of Magnetism, Plenum Press, New York 1967.
[13] M. Manojlović, M. Pavkov-Hrvojević, M. Škrinjar, M. Pantić, D. Kapor, S. Stojanović, Spin-wave dispersion and transition temperature in the cuprate antiferromagnet La2CuO4, Phys. Rev. B, Vol. 68 (2003) 014435.
[14] S. Radošević, M. Pantić, M. Rutonjski, D. Kapor, M. Škrinjar, Magnetic properties of quasi two-dimensional antiferromagnet Rb2MnCl4 with XXZ interaction anisotropy, Eur. Phys. J. B, Vol. 68 (2009) 511−517.
[15] W. Nolting, A. Ramakanth, Quantum Theory of Magnetism, Springerr-Verlag, Berlin 2009.
[16] P. Frobrich, P.J. Kuntz, Many-body Green's function theory of Heisenberg films, Physics Reports, Vol. 432 (2006) 223−304.
[17] M. Rutonjski, S. Radošević, M. Škrinjar, M. Pavkov-Hrvojević, D. Kapor, M. Pantić, Temperature dependence of sublattice magnetization in quasi-two-dimensional S=1/2 cuprate antiferromagnets: Green’s function approach, Phys. Rev. B, Vol. 76 (2007) 172506.
[18] S. Radošević, M. Rutonjski, M. Pantić, M. Pavkov-Hrvojević, D. Kapor, M. Škrinjar, The Néel temperature of a D-dimensional bcc Heisenberg antiferromagnet, Solid State Commun., Vol. 151 (2011) 1753−1757.
[19] M. Rutonjski, S. Radošević, M. Pantić, M. Pavkov-Hrvojević, D. Kapor, M. Škrinjar, Magnon specific heat of high-Tc parent compounds La2CuO4 and YBa2Cu3O6: Green’s function ap-proach, Solid State Commun., Vol.
151 (2011) 518−522.
[20] M. R. Pantić, D. V. Kapor, S. M. Radošević, and P. M. Mali, Phase diagram of quantum Heisenberg J1–J2 antiferromagnet on the body-centered-cubic lattice in random phase approximation, Solid State Commun., Vol. 182 (2014) 55−58.
Downloads
Published
2014-12-15
Issue
Section
Articles