ELECTRICAL CONDUCTIVITY OF THE ELECTRODEPOSITED COPPER POWDER FILLED LIGNOCELLULOSIC COMPOSITES

Authors

  • Miroslav Pavlović 1 University of Belgrade, ICTM-CMM, Njegoševa 12, 11000 Belgrade, Serbia
  • Miladin Gligorić University of East Sarajevo, Faculty of Technology, Karakaj bb, Zvornik, Republic of Srpska, B&H
  • Vladan Ćosović University of Belgrade, ICTM-CMM, Njegoševa 12, 11000 Belgrade, Serbia
  • Vaso Bojanić University of Banja Luka, Faculty of Agriculture, Bulevar vojvode Petra Bojovića 1A, Banja Luka, Republic of Srpska, B&H
  • Milorad Tomić University of East Sarajevo, Faculty of Technology, Karakaj bb, Zvornik, Republic of Srpska, B&H
  • Miomir Pavlović University of East Sarajevo, Faculty of Technology, Karakaj bb, Zvornik, Republic of Srpska, B&H

DOI:

https://doi.org/10.7251/cm.v2i5.1733

Abstract

This article deals with the synthesis and characterization of electroconductive composite materials prepared by the compression molding of mixtures of lignocellulose and electrochemically deposited copper powder under different pressures, as well as with the investigation of the influence of particle morphology on conductivity and the percolation threshold of obtained composites. Electrodeposited copper powder content varied from 1.9-29.4 vol%. The analysis of the most significant properties of prepared composites and its components included impedance spectroscopy (IS) behavior, the measurements of electrical conductivity, scanning electron microscopy (SEM) and structural analysis. It has been shown that the percolation threshold (PT) depends on both particle shape and the type of spatial distribution. IS measurements and SEM analysis have shown that particles that have pronounced grain boundaries have a bit effect on the appearance of electric conductive pathways thus on the composite conductivity. The packaging effect and more pronounced interparticle contact with copper powder particles lead to the “movement” of PT, which, for the particles <45 μm and the highest processing pressure of 27 MPa, was 7.2% (v/v).

References

[1] P. C. Powel, Engineering with polymer, Chapman and Hall, London 1983.

[2] B. D. Ratner, A.S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials science: an introduction to materials in medicine, Academic Press, New York 1996.

[3] R. Gomatam and K.L. Mittal (Eds), Electrically Conductive Adhesives, VSP/Brill, Leiden 2008.

[4] D. D. Lu, Y. G. Li. and C. P. Wong, Recent Advances in Nano-conductive Adhesives, J. Adhesion Sci. Technol., Vol. 22 (2008) 815−834.

[5] G. Hansen, The Mechanical and Electrical Properties of Nickel Nanostrands in: SAMPE J. Vol. 41 (2005) 24−28

[6] J. Burghardt, N. Hansen, L. Hansen and G. Hansen, The Mechanical and Electrical Properties of Nickel Nanostrands in Hysol 9396 Epoxy, in: Proc. International SAMPE Symposium Exhibition, Long Beach, CA, USA 2006, 51.

[7] M. M. Pavlović, V. Ćosović, M. G. Pavlović, N. Talijan and V. Bojanić, Electrical Conductivity of Lignocellulose Composites Loaded with Electrodeposited Copper Powders, Int. J. Electrochem. Sci., Vol. 6 (2011) 3812.

[8] M. M. Pavlović, V. Ćosović, M. G. Pavlović, V. Bojanić, N. D. Nikolić and R. Aleksić, Electrical Conductivity of Lignocellulose Composites Loaded with Electrodeposited Copper Powders. Part II. Influence of Particle Size on Percolation Threshold, Int. J. Electrochem. Sci., Vol. 7 (2012) 8883.

[9] M. M. Pavlović, M. G. Pavlović, V. Panić, N. Talijan, Lj. Vasilјević, M.V. Tomić, Electrical Conductivity of Lignocellulose Composites Loaded with Electrodeposited Copper Powders. Part III. Influence of Particle Morphology on Appearance of Electrical Conductive Layers, Int. J. Electrochem. Sci., Vol. 7 (2012) 8894.

[10] L. Averous and F. Le Digabel, Properties of biocomposites based on lignocellulosic fillers, Carbohydrate Polymers, Vol. 66−4 (2006) 480.

[11] M. Ioelovich, Cellulose as a nanostructured polymer: A short review, BioResources, Vol. 3−4 (2008) 1403.

[12] V. H. Poblete, M. P. Alvarez and V. M. Fuenzalida, Conductive copper-PMMA nanocomposites: Microstructure, electrical behavior, and percolation threshold as a function of metal filler concentration, Polymer Composites, Vol. 30 (2009) 328.

[13] G. Pinto, A. K. Maaroufi, R. Benavente and J. M. Perena, Electrical conductivity of urea–formaldehyde–cellulose composites loaded with copper, Polym. Compos., Vol. 32 (2011) 193.

[14] E. P. Mamunya, V. V. Davydenko, P. Pissis and E. V. Lebedev, The effect of high-energy electron beam irradiation and content of ATH upon mechanical and thermal properties of EVA copolymer, Euro. Polym. J., Vol. 38 (2002) 1187.

[15] Q. Xue, The influence of particle shape and size on electric conductivity of metal–polymer composites, Euro. Polym. J., Vol. 40 (2004) 323.

[16] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed., Taylor and Francis, London 1992.

[17] E. P. Mamunya, V. V. Davidenko and E. V. Lebedev, Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black, Compos. Interfaces, Vol. 4 (1996) 169.

[18] E. P. Mamunya, V. V. Davidenko and E. V. Lebedev, Percolation conductivity of polymer composites filled with dispersed conductive filler, Polym. Compos., Vol. 16 (1995) 319.

[19] M. M. Treacy, T. W. Ebbesen, J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, Vol. 381 (1996) 678.

[20] S. K. Bhattacharya, editor, Metal-filled polymers (properties and applications), Marcel Dekker, New-York 1986.

[21] E. A. Stefanescu, C. Daranga and C. Stefanescu, Insight into the Broad Field of Polymer Nanocomposites: From Carbon Nanotubes to Clay Nanoplatelets, via Metal Nanoparticles, Materials, Vol. 2 (2009) 2095.

[22] C. Singh, V. Sharma, P. Kr Naik, V. Khandelwal and H. Singh, A Green Biogenic Approach for Synthesis of Gold and Silver Nanoparticles Using Zingiber Officinale, Digest Journal of Nanomaterials and Biostructures, Vol. 6−2 (2011) 535.

[23] S. Nenkova, P. Velev, M. Dragnevska, D. Nikolova and K. Dimitrov, Lignocellulose nanocomposite containing copper sulfide, Bioresources, Vol. 6−3 (2011) 2356.

[24] M. A. Cohen Stuart et al., Emerging applications of stimuli-responsive polymer materials, Nature Materials, Vol. 9 (2010) 101.

[25] P. N. Velev, S. K. Nenkova, M. N. Kulevski, Polymer composites on the basis of lignocellulose containing copper sulfide for electromagnetic wave protection, Bulgarian Chemical Communications, Vol. 44−2 (2012) 164.

[26] V. Bojanić, M. G. Pavlović, New Technology for the Synthesis of New Materials Based on Cellulose and Sorption of Noble Metals, Noble Metals, S. Yen-Hsun (Ed.), ISBN978-953-307-898-4, InTech 2012, 180−206.

[27] Q. Xue, The influence of particle shape and size on electric conductivity of metal–polymer composites, Euro. Polym. J., Vol. 40 (2004) 323.

[28] C. N. Hamelinck, G. V. Hooijdonk, and A. P. Faaij, Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term, Biomass and Bioenergy, Vol. 28 (2005) 384.

[29] S. Kamel, Nanotechnology and its applications in lignocellulosic composites, a mini review, Express Polymer Letters, Vol. 1 (2007) 546.

[30] M. L. Sham and J. K. Kim, Evolution of residual stresses in modified epoxy resins for electronic packaging applications, Composites Part A: Appl. Sci. Manuf., Vol. 35 (2004) 537.

[31] J. Delmonte, Metal/Polymer Composites, Van Nostrand Reinhold, New York 1990.

[32] M. Thakur, A class of conducting polymers having nonconjugated backbones, Macromolecules, Vol. 21 (1988) 661.
[33] V. E. Gul, Structure and Properties of Conducting Polymer Composites, VSP, New York 1996.

[34] B. C. Munoz, G. Steinthal and S. Sunshine, Conductive polymercarbon black composites based sensor arrays for use in an electronic nose, Sens. Rev., Vol. 19 (1999) 300.

[35] J.B. Patel and P.Sudhakar, Adsorption of mercury by powdered corn cobs, EJEAFChe, Vol. 7−14 (2008) 2735.

[36] S. Kirkpatrick, Percolation and Conduction, Rev. Mod. Phys., Vol. 45 (1973) 574.

[37] E. Barsoukov, J. R. Macdonald, editors, Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley&Sons, Hoboken, New Jersey 2005.

[38] K. I. Popov and M.G. Pavlović, in Modern Aspects of Electrochemistry, Electrodeposition of metal powders with controlled particle grain size and morphology, B.E. Conway, J.O'M. Bockris and R.E. White, Eds.,Vol. 24, Plenum, New York 1993, 299.

[39] M. G. Pavlović, K. I. Popov and E. R. Stojilković, The effect of different deposition conditions on the morphology and grain size of electrodeposited metal powder, Bulletin of Electrochemistry, Vol. 14 (1998) 211.
[40] M. G. Pavlov
ić, Lj. J. Pavlović, V. M. Maksimović, N. D. Nikolić and K. I. Popov, Characterization and Morphology of Copper Powder Particles as a Function of Different Electrolytic Regimes, Int. J. Electrochem. Sci., Vol. 5 (2010) 1862.

[41] V. V. Panić, R. M. Stevanović, V. M. Jovanović, A. B. Dekanski, Electrochemical and capacitive properties of thin-layer carbon black electrodes, J. Pow. Sour., Vol. 181 (2008) 186.

[42] M. M. Pavlović, M. M. Pavlović, V. Ćosović, M. Gligorić, V. Bojanić, Influence of Filler Morphology on Electrical Conductivity of Biodegradable Lignocellulose Composites, 16. YUCORR – Meeting Point of the Science and Practice in the Fields of Corrosion, Materials and Environmental Protection, International Conference, Proceedings, CD, Tara, Serbia 2014, 284−293.

[43] L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. J. Baer, Effect of strain on the properties of an ethylene–octene elastomer with conductive carbon fillers, J. Appl. Polymer. Sci., Vol. 76 (2000) 894.

Published

2014-12-15