TESTING THE EFFECT OF AGGRESSIVE BEVERAGE ON THE DAMAGE OF ENAMEL STRUCTURE

Authors

  • Đorđe Mirjanić University of Banja Luka, Faculty of Medicine, Department of Dentistry, Save Mrkalja 14, Banja Luka, Republic of Srpska, B&H
  • Vladan Mirjanić University of Banja Luka, Faculty of Medicine, Department of Dentistry, Save Mrkalja 14, Banja Luka, Republic of Srpska, B&H
  • Jovan Vojinović University of Banja Luka, Faculty of Medicine, Department of Dentistry, Save Mrkalja 14, Banja Luka, Republic of Srpska, B&H

DOI:

https://doi.org/10.7251/cm.v1i6.1963

Abstract

Examining the enamel surface with the Atomic Force Microscopy (AFM) enables more precise registering and defining of the changes of enamel surface structure and of microhardness. This method can be used to compare the efficiency of application of different preventive and therapy materials and medicaments in dentistry. Under the influence of coca cola, a change of crystal structure and nanomorphology on enamel surface occurs.

The trial was conducted on a total of 40 extracted teeth which were divided into two groups treated with the solution of coca cola during 5 minutes, and then prepared and tested with a standard AFM procedure, type SPM-5200. Quantitative analysis was performed by comparing the roughness parameters (Ra) of treated and non-treated sample.

References

[1] N. Roveri, et al., Surface enamel remineralization: Biomimetic apatite nanocrystals and fluoride ion, Journal of Nanomaterials, Vol. 2009 (2009), pages 9.

[2] S. Chandra, et al., Textbook of Dental and Oral Histology with Embryology and MCQS, 2/E, Jaypee Brothers Medical Publishers (P) Ltd.; 2nd edition, 2010.

[3] A. D. L. Humphris, M. J. Miles, J. K. Hobbs, A mechanical microscope: High-speed atomic force microscopy, Appl Phys Lett., Vol. 86 (2005) 281−288.

[4] T. Schmid, J. Burkhard, B. S. Yeo, W. Zhang, R. Zenobi, Towards chemical analysis of nanostructures in biofilms I: Imaging of biological nanostructures, Anal. Bioanal. Chem., Vol. 391 (2008) 1899−1905.

[5] L. Bozec, J. de Groot, M. Odlyha, B. Nicholls, M. A. Horton, Mineralised tissues as nanomaterials: Analysis by atomic force microscopy, IEEE Proc. Nanobiotechnol., Vol. 152 (2005) 183−186.

[6] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J Mater Res, Vol. 7 (1992) 15641583.

[7] S. Kimyai, et al., Effect of three prophy-laxis methods on surface roughness of giomer, Medicina Oral, Patología Oral y Cirugía Bucal, Vol. 161 (2011), e110-e114.

[8] G. J. Lee, et al., A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets, Micron, Vol. 417 (2010) 775782.

[9] C. Poggio, et al., Impact of two tooth-pastes on repairing enamel erosion produced by a soft drink: an AFM in vitro study, Journal of Dentistry, Vol. 3811 (2010) 868874.

[10] J. Gimzewski, M. J. Miles, High-speed atomic force microscopy of dental enamel dissolution in citric acid, Arch. Histol. Cytol., Vol. 72 (2009) 328−335.

[11] U. S. Department of Health and Human Services (8 August 2007). Preventing Chronic Diseases: Investing Wisely in Health, National Center for Chronic Disease Prevention and Health.

[12] M. E. Barbour, M. Finke, D. M. Parker, J. A. Hughes, G. C. Allen, M. Addy, The relationship between enamel softening and erosion caused by soft drinks at a range of temperatures, J Dent., Vol. 34 (2006) 207213.

[13] P. Preethu, S. Maitreyeed, R. Dodawad, The effect of Four Fruit Juices on the Ph of Dental Plaque - A Four Period Cross-Over Study, Journal of clinical and diagnostic research, Vol. 4 (201 ) 2587–2593.

[14] J. Field, P. Waterhouse, M. Germa, Quantifying and qualifying surface changes on dental hard tissues in vitro, Journal of dentistry,
Vol. 38 (2010) 182–19.

[15] R. A. Freitas, Jr. Nanodentistry, J. Am. Dent. Assoc., Vol. 131 (2000) 1559−1565.

[16] B. Holme, L. H. Hove, A. B. Tveit, Using white light interferometry to measure etching of dental enamel, Measurement, Vol. 38 (2005) 137−147.

[17] I. Al-Majed, A. Maguire, J. J. Murray, Risk factors for dental erosion in 5–6 year old and 12–14 year old boys in Saudi Arabia, Community Dent Oral Epidemiol, Vol. 30 (2002) 38–46.

[18] A. Smith, The Oxford companion to American food and drink, Oxford University Press US, 2007, p.451.

[19] T. Attin, K. Meyer, E. Hellwig et al., Effect of mineral supplements to citric acid on enamel erosion. Arch Oral Biol, Vol. 48 (2003) 753–759.

[20] T. Attin et al., Impact of modified acidic soft drinks on enamel erosion, Oral Diseases, Vol. 11 (2005) 7–12.

[21] B. Neville, D. D. Damm, C. M. Allen,
J. Bouquot, Oral and Maxillofacial Pathology, 3rd Edition, Saunders; 2008.

[22] N. Schlueter, A. Hara, R. P. Shellis, C. Ganss, Methods for the measurement and characterization of erosion in enamel and dentine, Caries Res, Vol. 451 (2011) 1323.

[23] M. E. Barbour, M. Finke, D. M. Parker, J. A. Hughes, G. C. Allen, M. Addy, The relationship between softening and erosion caused by soft drinks at a range of temperatures. J Dent, Vol. 34 (2006) 207213.

24] M. E. Barbour, D. M. Parker, G. C. Allen, K. D. Jandt, Human enamel erosion in constant composition citric acid solutions as a function of degree of saturation with respect to hydroxyapatite, Journal of Oral Rehabilitation, Vol. 32 (2005) 1621.

[25] M. Barbour, R. P. Shellis, An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity, Phys Med Biol, Vol. 52 (2007) 899910.

[26] H. Devlin, M. A. Bassiouny, D. Boston, Hardness of enamel exposed to Coca-Cola and artificial saliva, J Oral Rehabil, Vol. 331 (2006) 2630.

[27] C. Fzhen-Jiang, et al., The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation, Biomed. Mater., Vol. 4 (2009) 015020.

[28] B. W Sigusch, M. Beyer, E. Heurich,
K. D. Jandt, Erosion des Zahnhartgewebes - Neue pathogenetische und diagnostische, Aspekte durch Atom-Kraft-Mikroskopie und Nanoindentation ZWR, Vol. 117 (2008) 152158.

[29] Q. Zeng, et al., Comparisons of the Apatite Presentation and Demineralization in Enamel and Cementum by Atomic Force Microscopy, Key Engineering Materials, Vol. 733 (2007) 330−332.

[30] C. Machado, W. Lacefield, A. Catledge, Human Enamel Nanohardness, Elastic Modulus and Surface Integrity after Beverage Contact, Braz Dent J., Vol. 191 (2008) 68−72.

31] A. Lussy, T. Jaeggi, S. Jaeggi-Scharer, Prediction of the erosive potential of some beverages. Caries Res, Vol. 29 (1995) 349354.

[32] G. Maupome, J. Diez de Bonilla,
G. Torres-Villasenor, L. C. Andrade- Delgado,
V. M. Castaño, In vitro quantitative assessment of enamel microhardness after exposure to eroding immersion in cola drink, Caries Res,Vol. 32 (1998) 148153.

[33] V. V. Badra, J. J. Faraoni, R. P. Ramos, R. G. Palma-Dibb, Influence of different beverages on the microhardness and surface roughness of resin composites, Oper Dent, Vol. 30 (2005) 213219.

[34] J. H. Meurman, R. M. Frank, Progres-sion and surface ultrastructure of in vitro caused erosive lesions in human and bovineenamel, Caries Res, Vol. 25 (1991) 8187.

[35] E. Quartarona, et al., Surface kinetic roughening caused by dental erosion: An atomic force microscopy study. J. Appl. Phys., Vol. 103 (2008) 104702.

Published

2015-11-11