TRANSPORT IN HELICALLY COILED CARBON NANOTUBES: SEMICLASSICAL APPROACH

Authors

  • Zoran P. Popović NanoLab, Center for Quantum Theoretical Physics, Faculty of Physics, University of Belgrade, Studentski trg 12, 11158 Belgrade, Serbia
  • Tatjana Vuković NanoLab, Center for Quantum Theoretical Physics, Faculty of Physics, University of Belgrade, Studentski trg 12, 11158 Belgrade, Serbia
  • Božidar Nikolić NanoLab, Center for Quantum Theoretical Physics, Faculty of Physics, University of Belgrade, Studentski trg 12, 11158 Belgrade, Serbia
  • Milan Damnjanović NanoLab, Center for Quantum Theoretical Physics, Faculty of Physics, University of Belgrade, Studentski trg 12, 11158 Belgrade, Serbia
  • Ivanka Milošević NanoLab, Center for Quantum Theoretical Physics, Faculty of Physics, University of Belgrade, Studentski trg 12, 11158 Belgrade, Serbia

DOI:

https://doi.org/10.7251/COMEN1501015P

Abstract

Semiconducting single wall carbon nanotubes (SWCNTs) exhibit high electron mobility in low electric field. Tube diameter and temperature have been found to strongly affect transport properties of SWCNTs. We have investigated electron mobility of helically coiled carbon nanotubes (HCCNTs). Electron and phonon band structures of HCCNTs are used in calculation of electron-phonon matrix elements. Scattering rates are calculated using the first order perturbation theory while taking care of energy and momentum conservation law. In order to obtain electron drift velocities, steady state simulation of charge transport is performed using Monte Carlo method.

References

[1] B. Xu, J. Yin, Z. Liu, Physical and Chemical Properties of Carbon Nanotubes, INTECH, 2013, p 414.

[2] J. Jiang, R. Saito, Ge. G. Samsonidze, S. G. Chou, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Electron-phonon matrix elements in single–wall carbon nanotubes, Phys. Rev. B, Vol. 72 (2005) 235408.

[3] G. Pennington, N. Goldsman, Semiclas-sical transport and phonon scattering of elec-trons in semiconducting carbon nanotubes, Phys. Rev. B, Vol. 68 (2003) 045426.

[4] S. Briggs, J. P. Leburton, Size effects in multisubband quantum wire structures, Phys. Rev. B, Vol. 38 (1988) 8163.

[5] I. Milošević, Z. P. Popović, and M. Damnjanović, Structure and stability of coiled carbon nanotubes, Phys. Stat. Solidi B, Vol. 249 (2012) 2442−2445.

[6] Z. P. Popović, M. Damnjanović, I. Milošević, Carbon nanocoils: structure and stability, Contemporary Materials, Vol. III−1 (2012) 51−54.

[7] I. Laszlo, A. Rassat, The geometric structure of deformed nanotubes and the topological coordinates, J. Chem. Inf. Comput. Sci., Vol. 43, (2003) 519−524.

[8] M. Damnjanović, I. Milošević, Line Groups in Physics, Springer-Verlag, Berlin, 2010.

[9] S. Dmitrović, Z. P. Popović,
M. Damnjanović, I. Milošević, Structural model of semi-metallic carbon nanotubes, Phys. Stat. Solidi B, Vol. 250 (2013) 2627–2630.

[10] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, Vol. 14 (2002) 783−802.

[11] J. Jiang, R. Saito, A. Gruneis, G. Dres-selhaus, M. Dresselhaus, Electron-phonon interaction and relaxation time in graphite, Chem. Phys. Lett., Vol. 392 (2004) 383−389.

[12] Z. P. Popović, M. Damnjanović, I. Milošević, Phonon transport in helically coiled carbon nanotubes, Carbon, Vol. 77 (2014) 281–288.

Downloads

Published

2015-11-11