POSSIBLE APPROACHES TO LCA METHODOLOGY FOR NANOMATERIALS IN SUSTAINABLE ENERGY PRODUCTION

Authors

  • Milica Perić Belgrade University, Innovation Center at the Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Belgrade
  • Igor Hut Belgrade University, Innovation Center at the Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Belgrade
  • Svetlana Pelemiš University in East Sarajevo, Faculty of Technology, Karakaj bb, 75400 Zvornik
  • Lidija Matija Belgrade University, Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Belgrade

DOI:

https://doi.org/10.7251/cm.v2i6.4073

Abstract

Nano-engineered materials are playing an ever growing role in the rapidly developing field of sustainable energy production. Besides providing numerous opportuni-ties for innovations in this domain, utilisation of nanostructured materials raises numerous doubts regarding their impact on the environment and possible adverse effects on human health. Providing reliable methods for analysis, evaluation and dealing with the environ-mental and health effects of nanotechnology is therefore crucial. In this article we will try to give an outline of possible approaches to deployment of Life Cycle Assessment (LCA) tools to nanomaterials used in certain applications for sustainable energy production. Use of such methods should also provide the possibility of comparing these new, emerging, technologies with that of already existing conventional ones in terms of their environmental, health and safety impacts.

References

G. Finnveden, M. Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington, and S. Suh, Recent developments in Life Cycle Assessment, J. Environ. Manage., Vol. 91 (2009) 1–21.

A. K. Hussein, Applications of nano-techno¬logy in renewable energies − A comprehensive overview and understanding, Renew. Sustain. Energy Rev., Vol. 42 (2015) 460–476.

E. Serrano, G. Rus, and J. García-Martínez, Nanotechnology for sustainable energy, Renew. Sustain. Energy Rev., Vol. 13 (2009) 2373–2384.

S. S. Mao, S. Shen, and L. Guo, Nanomaterials for renewable hydrogen production, storage and utilization, Prog. Nat. Sci. Mater. Int., Vol. 22−6 (2013) 522–534.

F. I. for S. and I. Research, Nano-techno¬lo¬gy in the sectors of solar energy and energy storage, Geneva, Switzerland 2013.

S. Pelemiš and I. Hut, Nanotechnology Materials for Solar Energy Conversion, Contempo¬rary Materials (Renewable Energy Sources), Vol. IV−2 (2013) 145–151.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev., Vol. 11−3 (2007) 401–425.

C. W. Tan, K. H. Tan, Y. T. Ong, A. R. Mohamed, S. H. S. Zein, and S. H. Tan, Energy and environmental applications of carbon nanotubes, Environ. Chem. Lett., Vol. 10−3 (2012) 265–273.

S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, Vol. 257 (2014) 421–443.

A. Azapagic, Life cycle assessment and its application to process selection, design and optimisation, Chem. Eng. J., Vol. 73−1 (1999) 1–21.

C. Pieragostini, M. C. Mussati, and P. Aguirre, On process optimization considering LCA methodology, J. Environ. Manage., Vol. 96−1 (2012) 43–54.

G. Rebitzer, T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W. P. Schmidt, S. Suh, B. P. Weidema, and D. W. Pennington, Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications, Environ. Int., Vol. 30 (2004) 701–720.

ISO, ISO 14044:2006 - Environmental management - Life cycle assessment - Requirements and guidelines, [Online] Available: http://www.iso.org/iso/catalogue_detail?csnumber=38498. [Accessed: 04-Apr-2015].

ISO, ISO 14040:2006 - Environmental management - Life cycle assessment - Principles and framework, [Online], Available: http://www.iso.org/iso/catalogue_detail?csnumber=37456. [Accessed: 04-Apr-2015].

S. González-García, M. T. Moreira, A. C. Dias, and B. Mola-Yudego, Cradle-to-gate Life Cycle Assessment of forest operations in Europe: Environmental and energy profiles, J. Clean. Prod., Vol. 66 (2014) 188–198.

H. P. Mattila, H. Hudd, and R. Zevenhoven, Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag, J. Clean. Prod., Vol. 84 (2014) 611–618.

P. W. R. Adams, J. E. J. Shirley, and M. C. McManus, Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction, Appl. Energy, Vol. 138 (2015) 367–380.

M. Braungart, W. McDonough, and A. Bollinger, Cradle-to-cradle design: creating healthy emissions e a strategy for eco-effective product and system design, 2007. [Online]. Available: http://www.ima.kth.se/utb/MJ1501/2010/Cradle1.pdf. [Accessed: 04-Apr-2015].

H. N. Hsieh and J. N. Meegoda, Sustai-nable Industrial Design and Waste Management – Cradle-to-Cradle for Sustainable Development, Academic Press, (2007), ISBN: 9780123736239,” Journal of Cleaner Production, Vol. 17−5 (2009) 570.

P. Llorach-Massana, R. Farreny, and J. Oliver-Solà, Are Cradle to Cradle certified products environmentally preferable? Analysis from an LCA approach, J. Clean. Prod., Vol. 93 (2015) 243–250.

E. Heracleous, Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines, Int. J. Hydrogen Energy, Vol. 36−18 (2011) 11501–11511.

F. Møller, E. Slentø, and P. Frederiksen, Integrated well-to-wheel assessment of biofuels combining energy and emission LCA and welfare economic Cost Benefit Analysis, Biomass and Bioenergy, Vol. 60 (2014) 41–49.

SAIC- Scientific Applications International Corporation, Life cycle assessment: principles and practice, U.S. EPA, 2006.

R. Frischknecht, N. Jungbluth, H. Althaus, C. Bauer, G. Doka, R. Dones, R. Hischier, S. Hellweg, T. Köllner, Y. Loerincik, and M. Margni, Implementation of Life Cycle Impact Assessment Methods, Dübendorf 2007.

M. Goedkoop, R. Heijungs, A. De Schryver, J. Struijs, and R. van Zelm, ReCiPe 2008. A LCIA method which comprises harmonised category indicators at the midpoint and the endpoint level, Report I: Characterisation, 2013.

European Commission − Joint Research Centre − Institute for Environment and Sustainability, International Reference Life Cycle Data System (ILCD) Handbook − General guide for Life Cycle Assessment − Detailed guidance 2010.

J. B. Guinée, R. Heijungs, G. Huppes, A. Zamagni, P. Masoni, R. Buonamici, T. Ekvall, and T. Rydberg, Life cycle assessment: past, present, and future, Environ. Sci. Technol., Vol. 45−1 (2011) 90–96.

L. M. Sargent, A. F. Hubbs, S.-H. Young, M. L. Kashon, C. Z. Dinu, J. L. Salisbury, S. A. Benkovic, D. T. Lowry, A. R. Murray, E. R. Kisin, K. J. Siegrist, L. Battelli, J. Mastovich, J. L. Sturgeon, K. L. Bunker, A. A. Shvedova, and S. H. Reynolds, Single-walled carbon nanotube-induced mitotic disruption, Mutat. Res., Vol. 745−1–2 (2012) 28–37.

J. A. Isaacs, A. Tanwani, and M. L. Healy, Environmental Assessment of SWNT Production, in Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, 2006, 38–41.

M. L. Healy, L. J. Dahlben, and J. a. Isaacs, Environmental assessment of single-walled carbon nanotube processes, J. Ind. Ecol., Vol. 12−3 (2008) 376–393.

S. Amarakoon, J. Smith, and B. Segal, Application of Life- Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles, U.S. EPA, 2013.

A. R. Köhler, C. Som, A. Helland, and F. Gottschalk, Studying the potential release of carbon nanotubes throughout the application life cycle, J. Clean. Prod., Vol. 16 (2008) 927–937.

N. C. Mueller and B. Nowack, Exposure Modeling of Engineered Nanoparticles in the Environment, Environ. Sci. Technol., Vol. 42−12 (2008) 4447–4453.

S. Olapiriyakul and R. J. Caudill, A framework for risk management and end-of-life (EOL) analysis for nanotechnology products: A case study in lithium-ion batteries, in IEEE International Symposium on Electronics and the Environment, 2008, 1–6.

X. Wang, G. Gaustad, C. W. Babbitt, C. Bailey, M. J. Ganter, and B. J. Landi, Economic and environmental characterization of an evolving Li-ion battery waste stream, J. Environ. Manage., Vol. 135 (2014) 126–134.

S. R. Pereira and M. C. Coelho, Can nanomaterials be a solution for application on alternative vehicles? – A review paper on life cycle assessment and risk analysis, Int. J. Hydrogen Energy, (2015) 1–11.

H. Şengül and T. L. Theis, An environ-mental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use, J. Clean. Prod., Vol. 19 (2011) 21–31.

J. Peng, L. Lu, and H. Yang, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems, Renew. Sustain. Energy Rev., Vol. 19 (2013) 255–274.

H. Sengiil and T. L. Theis, Nanotechnology Applications for Clean Water, Elsevier, 2009.

H. Wang, F. Wu, W. Meng, J. C. White, P. a. Holden, and B. Xing, Engineered nanoparticles may induce genotoxicity, Environ. Sci. Technol., Vol. 47−23 (2013) 13212–13214.

J. Pelka, H. Gehrke, A. Rechel, M. Kappes, F. Hennrich, C. G. Hartinger, and D. Marko, DNA damaging properties of single walled carbon nanotubes in human colon carcinoma cells, Nanotoxicology, Vol. 7−1 (2013) 2–20.

D. van Berlo, M. Hullmann, A. Wessels, A. M. Scherbart, F. R. Cassee, M. E. Gerlofs-Nijland, C. Albrecht, and R. P. F. Schins, Investigation of the effects of short-term inhalation of carbon nanoparticles on brains and lungs of c57bl/6j and p47(phox-/-) mice, Neurotoxicology, Vol. 43 (2014) 65–72.

H. K. Lindberg, G. C.-M. Falck, J. Catalán, A. J. Koivisto, S. Suhonen, H. Järventaus, E. M. Rossi, H. Nykäsenoja, Y. Peltonen, C. Moreno, H. Alenius, T. Tuomi, K. M. Savolainen, and H. Norppa, Genotoxicity of inhaled nanosized TiO(2) in mice, Mutat. Res., Vol. 745−1–2 (2012) 58–64.

E. Huerta-García, J. A. Pérez-Arizti, S. G. Márquez-Ramírez, N. L. Delgado-Buenrostro, Y. I. Chirino, G. G. Iglesias, and R. López-Marure, Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells, Free Radic. Biol. Med., Vol. 73 (2014) 84–94.

M. Miseljic and S. I. Olsen, Life-cycle assessment of engineered nanomaterials: A literature review of assessment status, J. Nanoparticle Res., Vol. 16−6 (2014) 2427.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Lett., Vol. 4−1 (2004) 11–18.

L. W. Zhang and N. A. Monteiro-Riviere, Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin, Skin Pharmacol. Physiol., Vol. 21−3 (2008) 166–180.

R. D. Holbrook, K. E. Murphy, J. B. Morrow, and K. D. Cole, Trophic transfer of nanoparticles in a simplified invertebrate food web, Nat. Nanotechnol., Vol. 3−6 (2008) 352–355.

F. M. Winnik and D. Maysinger, Quantum dot cytotoxicity and ways to reduce it, Acc. Chem. Res., Vol. 46−3 (2013) 672−680.

T. Chen, J. Yan, and Y. Li, Genotoxicity of titanium dioxide nanoparticles, J. Food Drug Anal., Vol. 22−1 (2014) 95–104.

T. Walser, E. Demou, D. J. Lang, and S. Hellweg, Prospective environmental life cycle assessment of nanosilver T-shirts, Environ. Sci. Technol., Vol. 45−10 (2011) 4570–4578.

R. Hischier, Framework for LCI model-ling of releases of manufactured nanomaterials along their life cycle, Int. J. Life Cycle Assess., (2014) 1–12.

J. Y. Choi, G. Ramachandran, and M. Kandlikar, The Impact of Toxicity Testing Costs on Nanomaterial Regulation, Environ. Sci. Technol., Vol. 43−9 (2009) 3030–3034.

Downloads

Published

2017-12-12