THERMAL ANALYSIS OF LIGNOCELLULOSE COMPOSITES FILLED WITH METAL POWDERS

Authors

  • Miroslav M. Pavlović University of Belgrade, ICTM-CEH, Njegoševa 12, Belgrade, Serbia
  • Vladan Ćosović University of Belgrade, ICTM-CMM, Njegoševa 12, Belgrade, Serbia
  • Zoran Janković V&Z Zaštita, d. o. o., Put srpskih branilaca 15H, B. Luka, Republic of Srpska, Bosnia and Herzegovina
  • Jasna Stajić-Trošić University of Belgrade, ICTM-CMM, Njegoševa 12, Belgrade, Serbia
  • Miomir G. Pavlović University of East Sarajevo, Faculty of Technology, Karakaj bb, Zvornik, Republic of Srpska, Bosnia and Herzegovina

DOI:

https://doi.org/10.7251/cm.v1i7.4197

Abstract

Composite materials are gaining increasing industrial applications worldwide. Composites based on polymers with conductive fillers have been recently in the focus of extensive research  primarily because of their growing importance from the point of view of application. Natural polymers based on renewable materials with selected fillers can be used directly as contemporary materials in: electronics, medicine, industry, as contact conductive materials, electromagnetic and radio wave shields, photothermal optical recorders, electronic noses sensitive to certain chemicals, as well as economically acceptable catalysts. In this paper the results of experimental studies of the properties of composite materials based on lignocellulosic matrix (LC) filled with electrolytic copper powder and chemically obtained silver powder are presented. Volume fractions of metal fillers in the composite materials in tested samples were varied in the range of 1.6-30% (v/v), and the samples were prepared by compression – cold pressing. Characterization included examination of the influence of particle size and morphology on the conductivity and percolation threshold of the composites using a variety of testing techniques: SEM, TGA, DSC, particle size distribution and conductivity measurements. The thermal analysis of the prepared composites showed the improvement of the thermal characteristics of the composites. This was due to the presence of the metallic fillers which are very good thermal conductors, hence accumulating the emitted heat during TGA measurements primary to lignocellulosic matrix. On the other hand, there is no difference in the response with different metallic fillers and particles with different morphologies. Glass transition temperature is improved by 20 ºC for all the composites

References

V. H. Poblete, M. P. Alvarez, V. M. Fuenzalida, Conductive copper-PMMA nanocomposites: Microstructure, electrical behavior, and per-colation threshold as a function of metal filler concentration, Polymer Composites, Vol. 30 (2009) 328.

D. S. McLachlan., M. Blaszkiewicz, R. E. Newnham, Electrical Resistivity of Composites, Journal of the American Ceramic Society, Vol. 73−8 (1990) 2187.

D. Stauffer, A. Aharony, Introduction To Percolation Theory, 2nd ed., Taylor and Francis, London 1992.

L. J. Huijbregts, Charge transport and morphology in nanofillers and polymer nanocomposites, Doctoral Dissertation, Technische Universiteit Eindhoven, Eindhoven 2008.

V. Bojanić, Optimizacija sinteze akrilata celuloze i kalemljenje 4-vinilpiridina i 1-vinilimi¬dazola, Hemijska industrija, Vol. 64−6 (2010) 529.

G. Pinto, A. K. Maaroufi, Conducting polymer composites of zinc−filled urea–formaldehyde, Journal of Applied Polymer Science, Vol. 96 (2005) 2011.

M. Thakur, A class of conducting poly-mers having nonconjugated backbones, Macromolecules, Vol. 21 (1988) 661.

H. S. Son, H. J. Lee, Y. J. Park, J. H. Kim, Preparation of conducting polymer composites: effects of porosity on electrical conductivity, Polymer International, Vol. 46 (1998) 308.

J. Bouchet, C. Carrot, J. Guillet, Conductive composites of UHMWPE and ceramics based on the segregated network concept, Polymer Engineering and Science., Vol. 40 (2000) 36.

L. Flandin, A. Chang, S. Nazarenko,
A. Hiltner, E. Baer, Effect of strain on the properties of an ethylene – octene elastomer with conductive carbon fillers, Journal of Applied Polymer Science, Vol. 76 (2000) 894.

S. Kamel, Nanotechnology and its applications in lignocellulosic composites, a mini review, Express Polymer Letters, Vol. 1 (2007) 546.

E. A. Stefanescu, C. Daranga, C. Stefanescu, Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles, Materials, Vol. 2 (2009) 2095.

S. K. Bhattacharya (Ed.), Metal Filled Polymers: Properties and Applications, Marcel Dekker, New York 1986.

L. Xiangcheng, D. D. L. Chung, Elec-tromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites, Composites Part B: Engineering, Vol. 30 (1999) 227.

Y. Xu, D. D. L. Chung, C. Mroz, Ther-mally conducting aluminum nitride polymer-matrix composites, Composites Part A: Applied Science and Manufacturing, Vol. 32 (2001) 1749.

M. L. Sham, J. K. Kim, Evolution of residual stresses in modified epoxy resins for electronic packaging applications, Composites Part A: Applied Science and Manufacturing, Vol. 35 (2004) 537.

J. Delmonte, Metal/Polymer Composites, Van Nostrand Reinhold, New York 1990.

P. Lafuente, A. Fontecha, J. M. Diaz, A. E. Munoz, Modificación de las propiedades eléctricas de los plásticos, Revista De Plasticos Modernos, Vol. 447 (1993) 257.

V. E. Gul, Structure and Properties of Conducting Polymer Composites, VSP, New York 1996.

X. S. Yi, G. Wu, Y. Pan, Properties and applications of filled conductive polymer composites, Polymer International, Vol. 44 (1997) 117.

B. C. Munoz, G. Steinthal, S. Sunshine, Conductive polymer-carbon black composites-based sensor arrays for use in an electronic nose, Sensor Review, Vol. 19 (1999) 300.

B. D. Mottahed, Enhanced shielding effectiveness of polymer matrix composite enclosures utilizing constraint-based optimization, Polymer Engineering and Science, Vol. 40 (2000) 61.

A. K. Mohanty, M. Misra, L. T. Drzal (Eds.), Natural Fibers, Biopolymers, and Biocomposites, Taylor and Francis Group, Florida 2005.

L. Averous, F. L. Digabel, Properties of biocomposites based on lignocellulosic fillers, Carbohydrate Polymers, Vol. 66−4 (2006) 480.

S. Pilla (Ed.), Handbook of Bioplastics and Biocomposites Engineering Applications, John Wiley and Sons, New Jersey 2011.

D. K. Lee, V. N. Owens, A. Boe, P. Jeranyama, Composition of Herbaceous Biomass Feedstocks, S. D. S. University, USA 2007.

K. M. Foley, Chemical Properties, Physical Properties and Uses of the Anderson's Corncob Products and Supplements, Anderson's Cob Division Processing Group, Maumee, OH, USA 1978.

I. Božović, M. Radosavljević, R. Jovanović, S. Žilić, V. Bekrić, D. Terzić, Fizičko-hemijske karakteristike i hemijski sastav frakcija kukuruznog oklaska [Physical-Chemical Characteristics and Chemical Composition of the Fractions of Corncob], Journal of Scientific Agricultural Research, Vol. 63−3/4 (2002) 37.

M. M. Pavlović, V. Ćosović, M. G. Pavlović, N. Talijan, V. Bojanić, Electrical Conductivity of Lignocellulose Composites Loaded with Electrodeposited Copper Powders, International Journal of Electrochemical Science, Vol. 6 (2011) 3812.

M. M. Pavlović, M. G. Pavlović, V. Panić, N. Talijan, L. Vasiljević, M. V. Tomić, Electrical Conductivity of Lignocellulose Composites Loaded with Electrodeposited Copper Powders. Part III. Influence of Particle Morphology on Appearance of Electrical Conductive Layers, International Journal of Electrochemical Science, Vol. 7 (2012) 8894.

S. M. Zhang, L. Lin, H. Deng, X. Gao,
E. Bilotti, T. Peijs, Q. Zhang, Q. Fu, Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions, Express Polymer Letters, Vol. 6−2 (2011) 159.

M. M. Pavlović, Sinteza i karakterizacija elektroprovodnih kompozitnih materijala na bazi biorazgradivih polimera i prahova metala, [Synthesis and Characterization of Electro-Conductive Composite Materials on the Basis of Biodegradable Polymers and Metal Powders] PhD Thesis, Belgrade University, Faculty of Technology and Metallurgy, Belgrade 2015.

A. N. Shebani, A. J. V. Reenen,
M. Meincken, The effect of wood extractives on the thermal stability of different wood species, Thermochimica Acta, Vol. 471 (2008) 43.

F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu, Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis, Polymer Degradation and Stability, Vol. 93 (2008) 90.

H. S. Kim, S. Kim, H. J. Kim, H. S. Yang, Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content, Thermochimica Acta, Vol. 451−1 (2006) 181.

A. L. F. S. D`Almeida, D. W. Barreto,
V. Calado, J. R. M. D'Almeida, Thermal analysis of less common lignocellulose fibers, Journal of Thermal Analysis and Calorimetry, Vol. 91−2 (2008) 405.

Y. Furuta, H. Aizawa, H. Yano, M. Norimoto, Thermal-softening properties of water-swollen wood IV. The effects of chemical constitu-ents of the cell wall on the thermal-softening properties of wood, Mokuzai Gakkaishi, Vol. 43−9 (1997) 725.

C. A. Lenth, F. A. Kamke, Moisture dependent softening behavior of wood, Wood and Fiber Science, Vol. 33−3 (2001) 492.

T. Nakano, Analysis of the temperature dependence of water sorption for wood on the basis of dual mode theory, Journal of Wood Science, Vol. 52−6 (2006) 490.

S. N. Monteiro, R. J. S. Rodriguez, L. L. d. Costa, T. G. R. Portela, N. S. S. Santos, Thermal behavior of buriti biofoam, Revista Matéria, Vol. 15−2 (2010) 104.

Downloads

Published

2017-12-27