A NEW GENERATION OF ARMORED STEEL PLATES

Authors

  • Jure Bernetič PROTAC d.o.o., c. F. Prešerna 61, 4270 Jesenice, Slovenia
  • Borut Kosec University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, Ljubljana, Slovenia
  • Gorazd Kosec ACRONI d.o.o., c. B. Kidriča 44, Jesenice, Slovenia
  • Mirko Gojić University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3, Sisak, Croatia
  • Zijah Burzić Military Institute VTI, R. Resanovića 2, 10000 Belgrade, Serbia
  • Aleš Nagode University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, Ljubljana, Slovenia
  • Mirko Soković University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, Ljubljana, Slovenia
  • Milan Bizjak University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, Ljubljana, Slovenia

DOI:

https://doi.org/10.7251/cm.v2i7.4232

Abstract

The engineers of PROTAC d.o.o. and the biggest Slovenian steelwork ACRONI d.o.o., in cooperation with domestic and foreign institutions of science, have been designed and developed a new generation of armored steel PROTAC 500. Steel PROTAC 500 belongs to the group of high strength low alloy (HSLA) steels. It is made in steelwork ACRONI d.o.o. by the standard industrial procedures. The relevant mechanical properties of that steel are achieved by corresponding heat treatment procedure: quenching and tempering.

Preliminary tests of the mechanical properties of the steel have indicated the possibility of using steel PROTAC 500 for light armored vehicles. The presented work studied the response of new generation armored steel plates PROTAC 500 to the ballistic testing with armored piercing bullets with a core of tungsten carbide, charge 7.62 mm. However, the interactions between the piercing bullets and the armored steel plate were also investigated. The most obvious and significant phenomena in penetrating of the piercing bullets Nammo AP8 in steel target PROTAC 500 are strain hardening of steels, the appearance of cracks and local failure, adiabatic shear bands (ASB) with related phase transformations, and melting as well as alloying at the interface between bullet and steel plate

References

R. A. Rodriguez, S. Becker, G. B. Andersen, D. Heide, M. Greiner, Transmission needs across a fully renewable European power system, Renewable Energy, Vol. 63 (2014) 467−476.

REN 21 Steering Committee, Renewables 2013, Global Status Report. Available at: http://www.ren21.net/Portals/0/documents/Resources/GSR/2013/GSR2013_lowres.pdf.

K. Van der Bergh, E. Delarue, W. D'haeseleer, The impact of renewable injections on cycling of conventional power plants, TME WORKING PAPER - Energy and Environment, Last update: May 2013. Available at: http://www.mech.kuleuven.be/en/tme/research/energy_environment/Pdf/wpen2013-05.pdf.

H. Lund, Large-scale integration of op-timal combinations of PV, wind and wave power into the electricity supply, Renewable Energy, Vol. 31 (2006) 503−515.

D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger, Seasonal optimal mix of wind and solar power in a future, highly renewable Europe, Renewable Energy, Vol. 35 (2010) 2483−2489.

M. G. Rasmussen, G. B. Andersen, M. Greiner, Storage and balancing synergies in a fully or highly renewable pan-European power system, Energy Policy, Vol. 51 (2012) 642−651.

G. B. Andersen, R. A. Rodriguez, S. Becker, M. Greiner, The potential for arbitrage of wind and solar surplus power in Denmark, Energy, Vol. 76 (2014) 49−58.

Energy Regulatory Commission of the Republic of Macedonia, Yearly report 2015, Available at: http://www.erc.org.mk/odluki/2015.05.15_Godisen%20izvestaj%20za%20rabota%20na%20Regulatornata%20komisija%20za%20energetika%20na%20RM%20za%202014%20godina_FINAL.pdf

M. Collares-Pereira, A. Rabl, The avera-ge distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values, Solar Energy, Vol. 22 (1979) 155−164.

I. Cvrk, Optimizing the Use of Solar Energy by Photovoltaic Conversion, Graduation paper no.125. [Na hrvatskom: I. Cvrk, Optimiranje korištenja solarne energije fotonaponskom pretvorbom, diplomski rad br. 125], Available at: http://www.ieee.hr/_download/repository/DR08ICvrk.pdf.

B. Y. H. Liu, R. C. Jordan, The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy, Vol. 4 (1960) 1−19.

A. Dedinec, A. Dedinec, N. Markovska, Optimization of heat saving in buildings using unsteady heat transfer model, Thermal Science, Vol. 19−3 (2015) 881−892.

Electricity Transmission System Operator of Macedonia (MEPSO), Daily information. (2010−2013), Available at: http://mepso.com.mk/ListanjeIzveshtai.aspx?categoryID=113

NASA, Surface meteorology and Solar Energy, (2003−2005) Available at: https://eosweb.larc.nasa.gov/sse/

I. Staffell, Wind Turbine Power Curves, 2012, Available at: http://www.academia.edu/1489838/Wind_Turbine_Power_Curves

Macedonian power plants - ELEM. “Инвестициони проекти на А.Д ЕЛЕМ од обновливи извори на електрична енергија”. Недела на енергетиката. (2012). (in Bulgarian) Available at: http://energyweek.mk/Prezentacii%20Finalni/5.%20ELEM%20AD%20Makedonija.pdf

Electricity Transmission System Operator of Macedonia (MEPSO), Dispatch reports (2010−2013), Available at: http://mepso.com.mk/ListanjeIzveshtai.aspx?categoryID=110

Macedonian Academy of Science and Arts, Strategy for utilisation of renewable energy sources in the Republic of Macedonia By 2020, 2010, Available at: http://iceor.manu.edu.mk/Documents/ICEIM/Strategies/Strategy%20for%20utilization%20RES.pdf

Downloads

Published

2017-12-29