SOLID SOLUBILITY IN Cu5Gd1-xCax SYSTEM: STRUCTURE, STABILITY, HYDROGENATION AND CATALYSIS OF OXYGEN REDUCTION

Authors

  • Andraž Kocjan Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
  • Luka Kelhar Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia PACS2 International Associated Laboratory CNRS-Jožef Stefan Institute, Nancy and Ljubljana, Slovenia
  • Anton Gradišek Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
  • Blaž Likozar National Institute for Chemistry, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
  • Kristina Žagar Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia PACS2 International Associated Laboratory CNRS-Jožef Stefan Institute, Nancy and Ljubljana, Slovenia
  • Spomenka Kobe Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia PACS2 International Associated Laboratory CNRS-Jožef Stefan Institute, Nancy and Ljubljana, Slovenia
  • Jean-Marie Dubois 3 Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex, France 4 PACS2 International Associated Laboratory CNRS-Jožef Stefan Institute, Nancy and Ljubljana, Slovenia

DOI:

https://doi.org/10.7251/cm.v1i8.4242

Abstract

We studied the effects of substituting gadolinium in the compound Cu5Gd with Ca by investigating the phase stability and crystal structure of the resulting new compounds. For rapidly quenched materials produced by melt spinning, the crystal structure was always hexagonal P6/mmm, irrespective of the Ca addition (x) in alloys with the formula Cu5Gd1-xCax, indicating good solid solubility under these conditions, which was additionally confirmed by Vegard’s law. Slower cooling upon arc-melting process caused the phase separation into Cu4Gd and CuCa. Using TEM, we investigated rapidly solidified ribbons of Cu5Gd0.5Ca0.5 and observed co-existence of Cu–Ca secondary phase with a matrix phase having the nominal stoichiometric composition. The oxygen level in this sample was found to be within 2–5 at. %, which was attributed to surface oxidation during or after TEM sample preparation. Upon hydrogenation, the crystal structure of all samples changed from hexagonal to cubic (F-43m), which is the thermodynamically stable polymorph of Cu5Gd compound. Strong catalytic activity of water formation from gaseous H2 and O2 was coincidentally discovered during dehydrogenation experiment, thus making this material as potential candidate for zero-platinum oxygen reduction catalyst.

References

R. W. Cahn, P. Hassen, North Holland, Amsterdam, 1996, vol. 1.

A. Takeuchi, A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Mater. Sci. Eng. A, Vol. 304–306 (2001) 446−451.

Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Solid solution phase formation rules for multi-component alloys, Adv. Eng. Mater., Vol. 10 (2008) 534−538.

S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fccor bcc phase in high entropy alloys, Journal of Applied Physics, Vol. 109 (2011) 103505−103510.

S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropyalloys:forming solid solutions or amorphous phase, Intermetallics, Vol. 41 (2013) 96−103.

C. A. Gearhart, Einstein before 1905: the early papers on statistical mechanics, American Journal of Physics, Vol. 58−5 (1990) 468−480.

Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, Vol. 61 (2014) 1−93.

A. R. Ruffa, Thermal potential, mechanical instability, and melting entropy, Physical Review B, Vol. 25−9 (1982) 5895−5900.

H. Okamoto, Desk Handbook: Phase Diagrams for binary alloys, 2nd Edition, ASM International, 2010.

M. M. Carnasciali, S. Cirafici, E. Fran-ceschi, On the Gd-Cu system, Journal of the Less-Common Metals, Vol. 92 (1983) 143−147.

P. R. Subramanian, D. E. Laughlin, The Cu-Gd (Copper-Gadolinium) System, Bulletin of Alloy Phase Diagrams, Vol. 9−3a (1988) 347−354.

F. Merlo, M. L. Fornasini, The Structures of α-CaCu, β-CaCu, SrAg and BaAg: Four Different Stacking Variants Based on Noble-Metal-Centered Trigonal Prisms, Acta Crystallographica, Vol. B37 (1981) 500−503.

D. J. Chakrabarti, D. E. Laughlin, The Ca-Cu (Calcium-Copper) System, Bulletin of Alloy Phase Diagrams, Vol. 5−6 (1984) 570−576.

H. Kato, M. I. Copeland, USBM-U-952, Metallurgical Progress Rep., No. 15, National Technical Information Service, Springfield, VA (1962).

K. A. Gschneider, Jr. and F. W. Calderwood, Ca-Gd (Calcium-Gadolinium), Bulletin of Alloy Phase Diagrams, 8(6), Dec 1987.

A. Inoue, A. P. Tsai, T. Masumoto, Stable decagonal and icosahedral quasicrystals, Journal of Non-Crystalline solids, Vol. 117−118, Part 2 (1990) 824−827.

Y. Luo, A. Habrioux, L. Calvillo, G. Granozzi, N. Alonso-Vante, Thermally induced strains on the catalytic activity and stability of Pt–M2O3/C (M = Y or Gd) catalysts towards oxygen reduction reaction, ChemCatChem, Vol. 7 (2015) 1573−1582.

Y. Luo, A. Habrioux, L. Calvillo, G. Granozzi, N. Alonso-Vante, Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction, ChemPhysChem, Vol. 15 (2014) 2136.

I. Chorkendorff, Understanding the new class of Pt3X, and Pt5X (X = Sc, Y, La and Gd) oxygen reduction catalysts and their activation mechanism, Abstr. Pap. Am. Chem. S., Vol. 245 (2013) 463-ENFL.

A. R. Denton, N. W. Ashcroft, Vegard’s law, Phys. Rev. A, Vol. 43−6 (1991) 3161−3164.

P. Hruška, J. Čížek, P. Dobroň, W. Anwand, A. Mücklich, R. Gemma, S. Wagner, H. Uchida, A. Pundt, Investigation of nanocrystalline Gd films loaded with hydrogen, Journal of Alloys and Compounds, Vol. 645−1 (2015) S308−S311.

G. E. Sturdy, R. N. R. Mulford, The Gadolinium-Hydrogen System, Journal of the American Chemical Society, Vol. 78−6 (1956) 1083−1087.

P. Rittmeyer, U. Wietelmann, Hydrides, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, (2002), doi: 10.1002/14356007.a13 199.

C. Donnerer, T. Scheler, E. Gregoryanz, High-pressure synthesis of noble metal hydrides, The Journal of Chemical Physics, Vol. 138 (2013) 134507.

A. Gradišek, T. Apih, Hydrogen dynamics in partially quasicrystalline Zr69.5Cu12Ni11Al7.5: A fast field-cycling relaxometric study, The Journal of Physical Chemistry C, Vol. 119−19 (2015) 10677−10681.

M. Shimokawabe, H. Asakawa, N. Takezawa, Characterization of copper/zirconia catalysts prepared by an impregnation method, Applied Catalysis, Vol. 59−1 (1990) 45−58.

Lj. Kundaković, M. Flytzani-Stephanopoulos, Reduction characteristics of copper oxide in cerium and zirconium oxide systems, Applied Catalysis A: General, Vol. 171−1 (1998) 13−29.

R. N. Pease, H. S. Taylor, The reduction of copper oxide by hydrogen, Journal of American Chemical Society, Vol. 43−10 (1921) 2179−2188.

Downloads

Published

2018-02-12