RENEWABLES AND NEW MATERIALS

Authors

  • Momir Đurović Montenegrin Academy of Sciences and Arts, R. Stijovica 5, Podgorica, Montenegro
  • Siniša Đurović University of Manchester, A9b SSB, Schol of EEE, Sackville Street, M13 9PL, UK

DOI:

https://doi.org/10.7251/cm.v1i8.4394

Abstract

Different types of new materials and their application in renewable energy sources are discussed. The new materials in Solar cells like perovskite, ferroelectric, organometallic, ceramic, as well as different technologies such as tandem, multi junction or concentrated are presented. Fuel cells in particular SOFC (Solid Oxide Fuel Cell) as well as new tendencies in membranes and electrodes have been discussed. The trends to use fiber and composites for the blades in wind power, concrete towers, methods for sealing and protecting from corrosion are given, too. Some aspects of new batteries like flow batteries, zinc-air and aluminum-ion batteries, tidal and wave energy are reported.

References

V. Jeromilov, Basics of Dental Material, Faculty of Dentistry, Zag¬reb 2005.

N. Roveri et al., Surface enamel remineralization: Biomimetic apatite na¬no¬¬cry¬stals and fluoride ion, Journal of Nanomaterials, 2009: doi:¬ 10.¬1155/¬2009/¬746383.

C. Robinson, J. Kirkham, R. C. Shore, Dental Enamel Formation to Des¬truc¬tion, CRC Press, 1995.

S. Chandra et al., Textbook of Dental and Oral Histology with Embry¬o¬lo¬gy and MCQS, 2/E. Jaypee Brothers Medical Publishers (P) Ltd., 2nd edition, 2010.

N. Harris, F. Garcia-Godoy, N. Christine, Primary Preventive Dentistry (7th Edition), Pearson, 2007.

A. Nanci; Ten Cate's Oral Histology: Development, Structure, and Fun¬ction, Mosby 2004.

H. Ross Michael, G. I. Kaye, W. Pawlina, Histology: a text and atlas, 5th ed. Philadelphia. London: Lippincott Williams & Wilkins; 2006.

J. Vojinović et al., Biology of Teeth, Naučna knjiga, Belgrade,1990.

O. E. Smith and A. Nanci, Overview of morphological changes in ena¬mel organ cells associated with major events in amelogenesis, Int J Dev Biol., Vol. 39 (1995) 153161.

M. Ash Major Jr., S. J. Nelson, Dental anatomy, physiology, and occlu¬sion, 8th ed., Philadelphia: W. B. Saunders, 2003.

M. Bath-Balogh, M. J. Fehrenbach, Illustrated Dental Embryology, Histology, Anatomy, 2nd ed., Philadelphia: W. B. Saunders, 2006.

R. C. Melfi, K. E. Alley, Dorothy Permar's oral embryology and mic¬¬ro¬scopic anatomy: a textbook for students in dental hygiene, Willi¬ams&¬Wil¬kins; 1996.

J. P. Simoner, J. C. Hu, Dental enamel formation and its impact on cli¬ni¬cal dentistry, J Dent Educ., Vol. 65 (2001) 896905.

M. Goldberg, P. R. Garant, S.Takuma, Cell Biology of Tooth Enamel For¬mation, Karger 1990.

D. R. Beech, T. Jalaly, Bonding of polymers to enamel: Influence of de¬po¬sits formed during etching, etching time and period of water immersion, J Dent Res., Vol. 59 (1980) 11561162.

M. J. Shinchi, K. Soma, N. Nakabayashi, The effect of phosphoric acid con-centration on resin tag length and bond strength of a photo-cured resin to acid-et¬ch¬ed enamel, Dent Mater., Vol. 16 (2000) 324329.

B. Van Meerbeek, J. De Munck, Y. Yoshida, S. Inoue, M. Vargas, P. Vijay, et al., Buonocore memorial lecture. Adhesion to enamel and dentine: Current status and future challenges, Oper Dent., Vol. 28 (2003) 215235.

N. Nakabayashi, D. H. Pashley, Chapter III.; Acid Conditioning and Hyb¬ri¬dization of Substrates. Hybridization of Dental Hard Tissues. Tokyo: Quin¬te¬ssen¬ce Publishing Co., Ltd., 1998, 3739.

M. Hannig, H. Bock, B. Bott, W. Hoth-Hannig, Inter-crystallite nanoreten¬tion of self-etching adhesives at enamel imaged by transmission electron microscopy, Eur J Oral Sci., Vol. 110 (2002) 464470.

W. W. Barkmeier, A. J. Gwinnett, S. E. Shaffer, Effects of reduced acid con¬centration and etching time on bond strength and enamel morphology. J Clin Orthod., Vol. 21 (1987) 395408.

B. B. Cerci, L. S. Roman, O. Guariza-Filho, E. S. Camargo, O. M. Tanaka, Dental enamel roughness with different acid etching times: Atomic force mic¬ro¬scopy study., Eur J Gen Dent., Vol. 1 (2012) 187191.

A. J. Gwinnett, A. Matsui; A study of enamel adhesives. The physical relati¬onship between enamel and adhesive, Arch Oral Biol., Vol. 12 (1967) 16151620.

A. Gardner, R. Hobson, Variations in acid-etch patterns with different acids and etch times, Am J Orthod Dentofacial Orthop., Vol. 120 (2001) 6467.

J. D. Eick, L. N. Johnson, J. R. Fromer, R. J. Good, A. W. Neumann, Sur¬face topography: Its influence on wetting and adhesion in a dental adhesive system. J Dent Res., Vol. 51 (1972) 780788.

E. B. L. Casas, F. S. Bastos, G. C. D. Godoy, V. T. L. Buono Enamel wear and surface roughness characterization using 3D profilometry, Tribol Int., Vol. 41 (2008) 12321326.

S. Sharma, S. E. Cross, C. Hsueh, R. P. Wali, A. Z. Stieg, J. K. Gimzewski, Nanocharacterization in Dentistry, Int J Mol Sci., Vol. 11 (2010) 25232545.

A. Méndez-Vilas, J. M. Bruque, M. L. González-Martín, Sensitivity of sur¬face roughness parameters to changes in the density of scanning points in multi-scale AFM studies, Application to a biomaterial surface, Ultramicroscopy, Vol. 107 (2007) 617625.

V. Mirjanić, Đ. Mirjanić, AFM testing of nanostructure of resilience orthodontic bonding solutions orthodontic adhesive, Contemporary materials, Vol. VII1(2016) 5159.

Downloads

Published

2018-02-12