COMPARISON OF RADON CONCENTRATION MEASURED BY SHORT-TERM (ACTIVE) AND LONG-TERM (PASSIVE) METHOD

Authors

  • Zoran Ćurguz Faculty of Traffic Engineering, University of Eastern Sarajevo, Vojvode Mišića 52, Doboj, Republic of Srpska, BiH
  • Dragoljub Mirjanić Academy of Sciences and Arts of the Republic of Srpska, Bana Lazarevića 1, Banja Luka, Republic of Srpska, BiH
  • Milan Popović Faculty of Natural Sceinces and Mathematics, University of Banja Luka, Dr Mladena Stojanovića 2, Banja Luka, Republic of Srpska, BiH

DOI:

https://doi.org/10.7251/COMEN1701028C

Abstract

Measuring of radon concentration in an indoor  space in most cases is carried out by passive method by means of track detectors (CR – 39) with the period of exposure of six or twelve months. On the other hand, active method is less used, semiconductor detectors (Rad 7) with a direct reading of radon concentration and period of measurement of 7 days. The aim of this work is to compare the results of passive and active method in order to determine Pearson correlation coefficient between these two methods.

References

A. Sugimoto, Y. Nobe, K. Yamagishi, Crystal growth and optical characterization of Cr,Ca: Y3Al5O12, Journal of Crystal Growth, Vol. 140 (1994) 349–354.

M. Schubert, T.E. Tiwald, C.M. Herzin-ger, Infrared dielectric anisotropy and phonon modes of sapphire, Phys. Rev. B, Vol. 61 (2000) 8187–8201.

K.Kamaras, K. -L. Barth, F. Keilmann et al.,The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry, J. Appl. Phys., Vol. 78 (1995) 1235–1240.

S. Maletic, D. Maletic, I. Petronijevic, J. Dojcilovic and D. M. Popovic, Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions, Chinese Physics B, Vol. 23−2 (2013) 026102–6.

K. V. Benthem, C. Els¨asser and R.H. French, Bulk electronic structure of SrTiO3: Experiment and theory, J. Appl. Phys., Vol. 90 (2001) 6156–6164.

Ј. Dojcilovic, N.A. Kulagin, D. Popovic, S. Spasovic, Temperature dependence of the dielectric parameters of nonstoichiometric SrTiO3 single crystals, Crystallography Reports, Vol. 49−3 (2004) 469–475.

S. B. Maletic, D. D. Cerovic, F. S. Marinkovic, J. R. Dojcilovic, Dielectric and optical properties of a poly(ethylene terephthalate) membrane in the temperature interval 150 – 400 K, Journal of Applied Polymer Science, Vol. 132−7 (2015) 42834 (1–6).

Y. Xu and W.Y. Ching, Electronic structure of yttrium aluminum garnet (Y3Al5O12), Phys. Rev B., Vol. 59−16 (1999) 10530–10535.

J. Krupka, K. Derzakowski, M. Tobar, J. Hartnett, R. G. Geyer, Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures, Measurement Science and Technology, Vol. 10−5 (1999) 387–392.

R. D. Shannon, M. A. Subramanian, T. H. Allik, Dielectric constants of yttrium and rare‐earth garnets, the polarizability of gallium oxide, and the oxide additivity rule, J. Appl. Phys., Vol. 67 (1990) 3798–3802.

M. Lj. Napijalo, One application of thermodynamics to solid dielectrics, J. Phys. Chem Solids, Vol. 59 (1998) 1251–4.

N. A. Kulagin and J. Dojčilović, Structural and radiation color centers and the dielectric properties of doped yttrium aluminum garnet crystals, Phys Solid State, Vol. 49 (2007) 243–250.

S. Maletic, D. M. Popovic, V. Cubrovic, A. A. Zekic, J. Dojcilovic, Surface and crystalline analysis of aluminum oxide single crystal treated by quasistationary compression plasma flow, Materials Research Bulletin, Vol. 47−4 (2012) 963–966.

S. Maletic, Studying the effects of diffe-rent treatments on the spectral and structural characteristics of the laser crystals YAG, Al2O3 and SrTiO3, (in Serbian), PhD Thesis, Faculty of Physics, University of Belgrade, Belgrade 2011.

M. E. Innocenzi, R.T. Swimm et al, Optical absorption in undoped yttrium aluminum garnet, Journal of Applied Physic, Vol. 68 (1990) 1200–1204.

N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals, Oxford University Press, London 1940.

R. H. French, H. Müllejans, D. J. Jones, Optical Properties of Aluminum Oxide: Determined from Vacuum Ultraviolet and Electron Energy-Loss Spectroscopies, J. Am. Ceram. Soc., Vol. 81−10 (1998) 2549–2557.

Ј. H. Barrett, Dielectric constant in perovskite type crystals, Phys. Rev., Vol. 86−1 (1952) 118.

K. A. M¨uller and H. Burkhard, SrTiO3: An intrinsic quantum paraelectric below 4, Phys. Rev. B, Vol. 19 (1979) 3593–3602.

N. Kulagin and J. Dojcilovic, Strontium titanate: valency of Ti+ n and dielectrical properties of doped single crystals, Physica B, Vol. 269 (1999) 49–59.

S.Maletic, N. Paunovic, D. Popovic and J. Dojcilovic, Effects of Mn and Nd Doping on Polarization Mehanisms of SrTiO3 Single Crystal, Proceeding of the 7th International Conference of the Balkan Physical Union, Alexandroupolis, Greece, 2009, 267–271.

S. Maletic, D. Popovic, J. Dojcilovic, Dielectric measurements, Raman scattering and surface studies of Sm-doped SrTiO3 single crystal, Journal of Alloys and Compounds, 496 (1 – 2), (2010), 388 – 392.

F.S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds (Oxford: Pergamon) Oxford 1969, 3.

J. Dojcilovic, N. Kulagin, D.Popovic and S.Spasovic, Temperature Dependence of Dielectric Parameters of Nonstoichiometric SrTiO3 Single Crystals, Crystallography Reports, Vol. 49−3 (2004) 469–475.

T.Tsur, D. Dunbar, C. A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3, J. Electroceram, Vol. 7−1 (2001) 25–34.

Downloads

Published

2018-02-12