INFLUENCE OF PHYSICAL PROPERTIES ON THERMAL CONDUCTIVITY OF POLYSTYRENE INSULATION MATERIALS
DOI:
https://doi.org/10.7251/COMEN1701042AAbstract
Polymers based on polystyrene are widely used as thermoplastic materials due to the diversity in application, easy processability and a relatively low price. About 45% of the produced polystyrene is produced as compact and foamed products. Cellular foam polystyrene could be produced as expanded polystyrene (EPS) and extruded polystyrene (XPS) and is mainly used as insulation material. Therefore, physical and chemical properties of expanded and extruded polystyrene is of particular importance for thermal conductivity of the material. In this study, four types of expanded polystyrene were tested. Coefficient of thermal conductivity and the resistance of heat transfer were measured and compared to as well as mecahnical properties of the materials. It was confirmed that the density and thickness of the polystyrene influence the resistance of heat transfer.References
R. W. Cahn, P. Hassen, North Holland, Amsterdam, 1996, vol. 1.
A. Takeuchi, A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Mater. Sci. Eng. A, Vol. 304–306 (2001) 446−451.
Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Solid solution phase formation rules for multi-component alloys, Adv. Eng. Mater., Vol. 10 (2008) 534−538.
S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fccor bcc phase in high entropy alloys, Journal of Applied Physics, Vol. 109 (2011) 103505−103510.
S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropyalloys:forming solid solutions or amorphous phase, Intermetallics, Vol. 41 (2013) 96−103.
C. A. Gearhart, Einstein before 1905: the early papers on statistical mechanics, American Journal of Physics, Vol. 58−5 (1990) 468−480.
Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, Vol. 61 (2014) 1−93.
A. R. Ruffa, Thermal potential, mechanical instability, and melting entropy, Physical Review B, Vol. 25−9 (1982) 5895−5900.
H. Okamoto, Desk Handbook: Phase Diagrams for binary alloys, 2nd Edition, ASM International, 2010.
M. M. Carnasciali, S. Cirafici, E. Fran-ceschi, On the Gd-Cu system, Journal of the Less-Common Metals, Vol. 92 (1983) 143−147.
P. R. Subramanian, D. E. Laughlin, The Cu-Gd (Copper-Gadolinium) System, Bulletin of Alloy Phase Diagrams, Vol. 9−3a (1988) 347−354.
F. Merlo, M. L. Fornasini, The Structures of α-CaCu, β-CaCu, SrAg and BaAg: Four Different Stacking Variants Based on Noble-Metal-Centered Trigonal Prisms, Acta Crystallographica, Vol. B37 (1981) 500−503.
D. J. Chakrabarti, D. E. Laughlin, The Ca-Cu (Calcium-Copper) System, Bulletin of Alloy Phase Diagrams, Vol. 5−6 (1984) 570−576.
H. Kato, M. I. Copeland, USBM-U-952, Metallurgical Progress Rep., No. 15, National Technical Information Service, Springfield, VA (1962).
K. A. Gschneider, Jr. and F. W. Calderwood, Ca-Gd (Calcium-Gadolinium), Bulletin of Alloy Phase Diagrams, 8(6), Dec 1987.
A. Inoue, A. P. Tsai, T. Masumoto, Stable decagonal and icosahedral quasicrystals, Journal of Non-Crystalline solids, Vol. 117−118, Part 2 (1990) 824−827.
Y. Luo, A. Habrioux, L. Calvillo, G. Granozzi, N. Alonso-Vante, Thermally induced strains on the catalytic activity and stability of Pt–M2O3/C (M = Y or Gd) catalysts towards oxygen reduction reaction, ChemCatChem, Vol. 7 (2015) 1573−1582.
Y. Luo, A. Habrioux, L. Calvillo, G. Granozzi, N. Alonso-Vante, Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction, ChemPhysChem, Vol. 15 (2014) 2136.
I. Chorkendorff, Understanding the new class of Pt3X, and Pt5X (X = Sc, Y, La and Gd) oxygen reduction catalysts and their activation mechanism, Abstr. Pap. Am. Chem. S., Vol. 245 (2013) 463-ENFL.
A. R. Denton, N. W. Ashcroft, Vegard’s law, Phys. Rev. A, Vol. 43−6 (1991) 3161−3164.
P. Hruška, J. Čížek, P. Dobroň, W. Anwand, A. Mücklich, R. Gemma, S. Wagner, H. Uchida, A. Pundt, Investigation of nanocrystalline Gd films loaded with hydrogen, Journal of Alloys and Compounds, Vol. 645−1 (2015) S308−S311.
G. E. Sturdy, R. N. R. Mulford, The Gadolinium-Hydrogen System, Journal of the American Chemical Society, Vol. 78−6 (1956) 1083−1087.
P. Rittmeyer, U. Wietelmann, Hydrides, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, (2002), doi: 10.1002/14356007.a13 199.
C. Donnerer, T. Scheler, E. Gregoryanz, High-pressure synthesis of noble metal hydrides, The Journal of Chemical Physics, Vol. 138 (2013) 134507.
A. Gradišek, T. Apih, Hydrogen dynamics in partially quasicrystalline Zr69.5Cu12Ni11Al7.5: A fast field-cycling relaxometric study, The Journal of Physical Chemistry C, Vol. 119−19 (2015) 10677−10681.
M. Shimokawabe, H. Asakawa, N. Takezawa, Characterization of copper/zirconia catalysts prepared by an impregnation method, Applied Catalysis, Vol. 59−1 (1990) 45−58.
Lj. Kundaković, M. Flytzani-Stephanopoulos, Reduction characteristics of copper oxide in cerium and zirconium oxide systems, Applied Catalysis A: General, Vol. 171−1 (1998) 13−29.
R. N. Pease, H. S. Taylor, The reduction of copper oxide by hydrogen, Journal of American Chemical Society, Vol. 43−10 (1921) 2179−2188.