POTENTIAL APPLICATIONS OF NONWOVEN POLYMER MATS – REVIEW

Authors

  • P. Louda Technical University of Liberec, Faculty of Mechanical Engineering, Department of Material Science, Studentska 2, 461 17 Liberec
  • M. Fijałkowski Technical University of Liberec, Faculty of Mechanical Engineering, Department of Material Science, Studentska 2, 461 17 Liberec
  • Z. Rożek Technical University of Liberec, Faculty of Mechanical Engineering, Department of Material Science, Studentska 2, 461 17 Liberec
  • T. Bakalova Technical University of Liberec, Faculty of Mechanical Engineering, Department of Material Science, Studentska 2, 461 17 Liberec

DOI:

https://doi.org/10.7251/COMEN1202148L

Abstract

Nonwoven polymer mats with fibre diameters in the nanometer and micrometer range are distinguished for their high porosity with very small pore size, interconnectivity and controllable mesh thickness.  These characteristics associated to the easy way to obtain the polymer nanofibres and a large surface area to volume ratio make the nonwoven fiber mats a suitable material for different applications, such as biosensor, electronic materials and filters. Polymer nanofibers mats are being considered for use in biomedical applications, including the production of artificial blood vessels, scaffolds for engineered tissues, wound dressings.

References

[1] J. H. Beard, R. L. Shambaugh, B. R. Shambaugh, D. W. Schmidtke, On-line Measurement of Fiber Motion During Melt Blowing, Industrial & Engineering Chemistry Research Vol. 46 (2007) 7340−7352.

[2] S. Borkar, B. Gu, M. Dirmyer, R. Delicado, A. Sen, B. R. Jackson, J. V. Badding, Polytetrafluoroethylene nano/microfibers by jet blowing, Polymer 47 (2006) 8337−8343.

[3] D. R. Nisbet, A. E. Rodda, D. I. Finkelsteinb, M. K. Hornec, J. S. Forsythea, W. Shend, Surface and bulk characterisation of electrospun membranes: Problems and improvements, Colloids and Surfaces B: Biointerfaces 71 (2009) 1–12.

[4] O Jirsak, F Sanetrnik, D Lukas, V Kotek, L Martinova and J. Chaloupek, WO2005-024101 (2005), Czech. Pat.

[5] K. Park1, Y. M. Ju, J. S. Son, K.-D. Ahn, D. K. Han, Surface modification of biodegradable elec-trospun nanofiber scaffolds and their interaction with fibroblasts, Journal of Biomaterials Science, Polymer Edition, Vol. 18 (2007) 369–382.

[6] W.-J. Li, R. Tuli, X. Huang, P. Laquerriere, R. S. Tuan, Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold, Biomaterials 26 (2005) 5158–5166.

[7] W. J. Li, J. A. Cooper Jr., R. L. Mauck, R. S. Tuan, Fabrication and characterization of six elec-trospun poly(α-hydroxyester)-based fibrous scaffolds for tissue engineering applications, Acta Biomaterialia, Vol. 2 (2006) 377–385.

[8] X. Xin, M. Hussain, J. J. Mao, Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold, Biomaterials, Vol. 28 (2007) 316–325.

[9] K. Ma, C. K. Chan, S. Liao, W. Y. K. Hwang, Q. Feng, S. Ramakrishna, Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells, Biomaterials, Vol. 29 (2008) 2096−2103.

[10] N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials, Vol. 26 (2005) 6176–6184.

[11] Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, C. T. Lim, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering, Biomaterials, Vol. 29 (2008) 4314–4322.

[12] M. V. Jose, V. Thomas, K. T. Johnson, D. R. Dean, E. Nyairo, Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering, Acta Biomaterialia, Vol. 5 (2009) 305–315.

[13] K.H. Kim, L. Jeong, H. N. Park, S. Y. Shin, W. H. Park, S. C. Lee, T. I. Kim et al., Biological ef-ficacy of silk fibroin nanofiber membranes for guided bone regeneration, Journal of Biotechnology, Vol. 120 (2005) 327–339.

[14] R. Wilson, J. M. Whitelock, J. F. Bateman: Proteomics makes progress in cartilage and arthritis research, Matrix Biology, Vol. 28 (2009) 121−128.

[15] S. Sell, C. Barnes, M. Smith, M. McClure, P. Madurantakam, J. Grant, M. McManus, G. Bowlin, Review extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers, Polymer International, Vol. 56 (2007) 1349–1360.

[16] O. H. Kwon, I. S. Lee, Y.-G. Ko, W. Meng, K. H. Jung, I. K. Kang, Y. Ito, Electrospinning of mi-crobial polyester for cell culture, Biomedical Materials, Vol. 2 (2007) 52–S58.

[17] Y. I. Ba, A. Kalén, O. Risto, O. Wahlström, Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent, Wound Repair and Regeneration, Vol. 10 (2002) 336–340.

[18] H. M. Powell, D. M. Supp, S. T. Boyce, Influence of electrospun collagen on wound contraction of engineered skin substitutes, Biomaterials, Vol. 29 (2008) 834–843.

[19] Y.Z. Zhang, J. Venugopal, Z.-M. Huang, C.T. Lim, S. Ramakrishna, Crosslinking of the electros-pun gelatin nanofibers, Polymer, Vol. 47 (2006) 2911−2917.

[20] X. Zhu, W. Cui, X. Li, Y. Jin: Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering, Biomacromolecules, Vol. 9 (2008) 1795–1801.

[21] Chen M, Patra P K, Warner S B, et al., Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds, Tissue Engineering, Vol. 13 (2007) 579−587.

[22] A. Łukasiewicz, T. Drewa, S. Molski, Postępy w inżynierii naczyń krwionośnych, Polski Merku-riusz Lekarski, Vol. 138 (2007) 439− 442.

[23] Z. Ma, M. Kotaki, T. Yong, W. He, S. Ramakrishna: Surface engineering of electrospun polye-thylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering, Biomaterials, Vol. 26 (2005) 2527–2536.

[24] X. Zhang, C. B. Baughman, D. L. Kaplan: In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth, Biomaterials, Vol. 29 (2008) 2217−2227.

[25] J. Stitzel, J. Liu, S. J. Lee, M. Komura, J. Berry, S. Soker i inni: Controlled fabrication of a bio-logical vascular substitute, Biomaterials, Vol. 27 (2006) 1088–1094.

[26] B. W. Tillman, S. K. Yazdani, S. J. Lee, R. L. Geary, A. Atala, J. J. Yoo: The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction, Biomaterials, Vol. 30 (2009) 583–588.

[27] L. Li, M. W. Frey, T. B. Green: Modification of air filter media with nylon-6 nanofibers, Journal of Engineered Fibers and Fabric, Vol. 1 (2006) 1–22.

[28] K. H. Lee, D. J. Kim, B. G. Min, S. H. Lee: Polymeric nanofiber web-based artificial renal mi-crofluidic chip, Biomed Microdevices, Vol. 9 (2007) 435–442.

[29] K. M. Yun, C. J. Hogan Jr., Y. Matsubayashi, M. Kawabe, F. Iskandar, K. Okuyama, Nanoparticle filtration by electrospun polymer fibers, Chemical Engineering Science, Vol. 62 (2007) 4751– 4759.

[30] M. Iqbal, A. Saeed, S. I. Zafar, Hybrid biosorbent: an innovative matrix to enhance the biosorp-tion of Cd(II) from aqueous solution, Journal of Hazardous Materials, Vol. 148 (2007) 47−55.

[31] C. S. Ki, E. H. Gang, I. C. Um, Y. H. Park, Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption: Journal of Membrane Science, Vol. 302 (2007) 20–26.

[32] F. Jian, N. H. Tao, L. Tong, W, X. Gai, Applications of electrospun nanofibers, Chinese Science Bulletin, Vol. 53 (2008) 2265−2286.

[33] A. Z. Sadek, C. O. Baker, D. A. Powell, W. Wlodarski, R. B. Kaner, K. K. Zadeh, Polyaniline Nanofiber based surface acoustic wave gas sensors—effect of nanofiber diameter on H2 response, IEEE Sensors Journal, Vol. 7 (2007) 213−218.

Downloads

Published

2013-02-26