Excellent Domination Fuzzy Graphs

K. M. . Dharmalingam, P. Nithya

Апстракт


Let G be a fuzzy graph. A subset D of V is said to be Fuzzy
dominating set if every vertex u 2 V (G) there exists a vertex v 2 V

Пуни текст:

PDF

Референце


Allam, R.B. and Laskar, R. On domination and independent domination numbers of a graph, Discrete Math., 23(2)(1978), 73-76.

Haynes,T.W., Hedetniemi, S.T. and Slater, P.J. Fundamentals of domination in Graphs, Marcel Dekker, New York, 1998.

Sampathkumar, E. and Pushpalatha, L. Set domination in Graphs, J. Graph Theory, 18(5)(1994), 489-495.

Mordeson, J.N. and Nair, P.S. Fuzzy graphs and Fuzzy Hyper graphs, Physica-Verlag Heidelberg, Heidelberg, Second edition 2001.

Nagoorkani, A. and Chandrasekaran, V. T. Domination in fuzzy graph, Advances in fuzzy sets and systems, 1(1)(2006), 17-26.

Sridharan, N. and Yamuna, M. Excellent-Just Excellent-Very Excellent graphs, J. Math. Phy. Sci., 14(5)(1980), 471-475.

Sridharan, N. and Yamuna, M. A note on Excellent graphs, Ars Combinatoria, 78(2006), 267-276.

Rosenfeld, A., Fuzzy graphs, In Zadeh, L.A., Fu, K.S. and Shimura.M. (Eds.). Fuzzy sets and their Applications to cognitive and Decision Processes (pp. 77-95). Proceedings of the

USJapan Seminar on Fuzzy Sets and their Applications, Held at the University of California, Berkeley, California, July 14, 1974. Accedemic Press, New York 1975.

Somasundaram, A. and Somasundaram, S. Domination in Fuzzy Graphs-I, Pattern Recognition Letters, 19(9)(1998), 787-791.

Kulli, V.R. Theory of domination in Graphs, Vishwa International Publication, Gulbarga, India, 2012.


Рефбекови

  • Тренутно не постоје рефбекови.