A Study of the Inherent Inj-equitable Graphs

Hanaa Alashwali, Ahmad N. Alkenani, A. Saleh, Najat Muthana

Апстракт


Let G be a graph. The inherent Inj-equitable graph of a graph G
(IIE(G)) is the graph with the same vertices as G and any two vertices u and v are adjacent in IIE(G) if they are adjacent in G and jdegin(u)

Пуни текст:

PDF

Референце


A. Alkenani, H. Alashwali and N. Muthana. On the Injective Equitable Domination of Graphs. Applied Mathematics, 7(17)(2016), 2132-2139.

A. Alwardi, A. Alqesmah, and R. Rangarajan. Independent Injective Domination of Graphs. Int. J. Adv. Appl. Math. and Mech., 3(4)(2016), 142-151.

A. Alwardi, B. Arsic, I. Gutman and N. D. Soner. The common neighborhood graph and its energy. Iran. J. Math. Sci. Inf., 7(2)(2012), 1-8.

R. Balakrishnan abd K. Ranganathan. A textbook of graph theory. Springer-velag, New York 2000.

R. C. Bose. Strongly Regular Graphs, Partial geometries and partially balanced designs. Pacific J. Math., 13(2)(1963), 389-419.

G. Chartrand and L. Lesniak. Graphs and Diagraphs. 4th Edition. CRC Press, Boca Raton, (2005).

K. M. Dharmalingam. Equitable graph of a graph, Proyecciones J. Math., 31(4)(2012), 363-372.

F. Harary. Graphs Theory. Addison-Wesley, Reading Mass, (1969).


Рефбекови

  • Тренутно не постоје рефбекови.