Common Best Proximity Points in Complex Valued Metric Spaces

Seyed Masoud Aghayan, Ahmad Zireh, Ali Ebadian

Апстракт


In this paper, we obtain the existence and the uniqueness of com-
mon best proximity point theorems for non-self mappings between two subsets of a complex valued metric space satisfying certain contractive conditions. Our results supported by some examples.

Пуни текст:

PDF

Референце


J. Ahmad, A. Azam and S. Saejung. Common fixed point results for contractive mappings in complex valued metric spaces. Fixed Point Theory Appl., 2014, 2014:67.

A. Amini-Harandi. Common best proximity points theorems in metric spaces. Optim. Lett., 8(2)(2014). 581-589.

A. Azam, B. Fisher and M. Khan. Common fixed point theorems in complex valued metric spaces. Num. Func. Anal. Optim., 32(3)(2011), 243-253.

B. S. Choudhury, N. Metiya and P. Maity. Best proximity point results in complex valued metric spaces. Inter. J. Anal., Volume 2014 (2014), Article ID 827862.

G. E. Hardy and T. D. Rogers. A Generalization of fixed point theorem of Reich. Canad. Math. Bull., 16(1973), 201-206.

G. Jungck. Commuting mappings and fixed points. Amer. Math. Monthly, 83(4)(1976), 261-263.

C. Klin-eam and C. Suanoom. Some common fixed point theorems for generalized-contractive type mappings on complex-valued metric spaces. Abstract and Applied Analysis, Volume 2013(2013), Article ID 604215,.

T. S. Kumar and R. J. Hussain. Common fixed point theorems for contractive type mappings in complex valued metric spaces. International Journal of Science and Research (IJSR),

(8)(2014), 1131-1134.

A. A. Mukheimer. Some common fixed point theorems in complex valued b-metric spaces. The Scientific World Journal, Volume 2014(2014), ID:587825.

S. Reich. Kannan's fixed point theorem. Boll. Un. Mat. Ital., 4(4)(1971), 1-11.

S. Reich. Some remarks concerning contraction mappings. Canad. Math. Bull., 14(1971), 121-124.

F. Rouzkard and M. Imdad. Some common fixed point theorems on complex valued metric spaces. Computers and Mathematics with Applications, 64(6)(2012), 1866-1874.

S. S. Basha. Common best proximity points: global minimal solutions. TOP (An Official Journal of the Spanish Society of Statistics and Operations Research), 21(1)(2013), 182-188.

S. S. Basha. Common best proximity points: global minimization of multi-objective functions. J. Global Optim., 54(2)(2012), 367-373.

W. Sintunavarat and P. Kumam. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Ineq. Appl., 2012, 2012:84.


Рефбекови

  • Тренутно не постоје рефбекови.