Third Zagreb Indices and its Coindices of Two Classes of Graphs

K. Pattabiraman

Апстракт


In this paper, we compute the formulae for the third Zagreb in-
dices and its coindices for two classes of graphs such as edge corona product graph, double graph and kth iterated double graph.

Пуни текст:

PDF

Референце


M. O. Albertson. The irregularity of a graph. Ars Combin., 46(1997), 219--225.

A. R. Ashrafi, T. Doslic and A. Hamzeh. The Zagreb coindices of graph operations. Discrete Appl. Math. 158(15)(2010), 1571--1578.

Y.Hou and W. C. Shiu. The spectrum of the edge corona of two graphs. Elect. J. Linear Algebra, 20(2010), 586--594.

M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi. The first and second Zagreb indices of some graph operations. Discrete Appl. Math. 157(4)(2009), 804--811.

G. H. Fath-Tabar. Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem., 65(1)(2011), 79--84.

W. Luo and B. Zhou. On the irregularity of trees and unicyclic graphs with given matching number. Util. Math. 83(2010), 141--147.

G. H. Shirdel, H. Rezapour and A. M. Sayadi. The hyper-Zagreb index of graph operations. Iranian J. Math. Chem., 4(2)(2013), 213--220.

M. Veylaki, M. J. Nikmehr and H. A. Tavallaee. The third and hyper Zagren coindices of some graph operations. J. Appl. Math. Comput., 50(1-2)(2016), 315--325.

B. Zhou and W. Luo. On irregularity of graphs. Ars Combin., 88(2008), 55--64.


Рефбекови

  • Тренутно не постоје рефбекови.