Prešić Type Fixed Point Theorem for Six Maps in D- Metric Spaces
Abstract
In this paper, we obtain a Presic type xed point theorem forthree pairs of jointly 3k-weakly compatible maps in D-metric spaces.We also present an example to illustrate our main theorem. We also obtain four corollaries for four maps, three maps,two maps and a single map. We also give some probable modications of Theorems of [5, 12, 13] in G-metric spaces.
References
[1] B.C.Dhage, Generalized metric spaces and mappings with xed point, Bull. Calcutta. Math. Soc., 84(4)(1992), 329-336.
[2] K.P.R.Rao, G.N.V.Kishore and Md.Mustaq Ali, Generalization of Banach contraction principle of Presic type for three maps, Math. Sci., 3(3)(2009), 273-280.
[3] K.P.R.Rao, Md.Mustaq Ali and B.Fisher, Some Presic type generalization of Banach contraction principle, Math. Moravica, 15(1)(2011), 41-47.
[4] Lj.B.Ciric and S.B.Presic, On Presic type generalization of Banach contraction mapping principle, Acta. Math. Univ. Comenianae, LXXVI(2)(2007), 143-147.
[5] N.Dhasmana, A Fixed point theorem of Presic type in G-metric spaces, Int. J. Math. Archive, 6(2)(2015), 11-14.
[6] S.Banach, Surles operations dans les ensembles abstraits et leur applications aux equations, integrals, Fund. Math., 3(1922), 133-181.
[7] S.B.Presic, Sur une classe d′ inequations aux differences finite et sur la convergence de certaines suites, Publ. l′ inst. Math. (Belgrade), 5(19)(1965), 75-78.
[8] S.Sedghi, K.P.R.Rao and N.Shobe, Common Fixed point theorems for six weakly compatible mappings in D-metric spaces, Inter. J. Math. Sci., 6(2)(2007), 225-237.
[9] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao, On the topology of D-metric spaces and the generalization of D-metric spaces from metric spaces, Inter. J. Math. Math. Sci.,
2004(51)(2004), 2719-2740.
[10] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao, On the concepts of balls in a D-metric space, Inter. J. Math. Math. Sci., 2005(1)(2005), 133-141.
[11] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao, On convergent sequences and fixed point theorems in D-metric spaces, Inter. J. Math. Math. Sci., 2005(12)(2005), 1969-1988.
[12] U.C.Gairola and N.Dhasmana, A Fixed theorem of Presic type for a pair of maps in G-metric spaces, Int. J. Math. Archive, 6(3)(2015), 196-200.
[13] U.C.Gairola and N.Dhasmana. A common Fixed point theorem of Presic type for four maps in G-metric spaces, Adv. Fixed Point Theory, 5(4)(2015), 396-406.
[14] Z.Mustafa and B.Sims. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2)(2006), 289-297.
[2] K.P.R.Rao, G.N.V.Kishore and Md.Mustaq Ali, Generalization of Banach contraction principle of Presic type for three maps, Math. Sci., 3(3)(2009), 273-280.
[3] K.P.R.Rao, Md.Mustaq Ali and B.Fisher, Some Presic type generalization of Banach contraction principle, Math. Moravica, 15(1)(2011), 41-47.
[4] Lj.B.Ciric and S.B.Presic, On Presic type generalization of Banach contraction mapping principle, Acta. Math. Univ. Comenianae, LXXVI(2)(2007), 143-147.
[5] N.Dhasmana, A Fixed point theorem of Presic type in G-metric spaces, Int. J. Math. Archive, 6(2)(2015), 11-14.
[6] S.Banach, Surles operations dans les ensembles abstraits et leur applications aux equations, integrals, Fund. Math., 3(1922), 133-181.
[7] S.B.Presic, Sur une classe d′ inequations aux differences finite et sur la convergence de certaines suites, Publ. l′ inst. Math. (Belgrade), 5(19)(1965), 75-78.
[8] S.Sedghi, K.P.R.Rao and N.Shobe, Common Fixed point theorems for six weakly compatible mappings in D-metric spaces, Inter. J. Math. Sci., 6(2)(2007), 225-237.
[9] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao, On the topology of D-metric spaces and the generalization of D-metric spaces from metric spaces, Inter. J. Math. Math. Sci.,
2004(51)(2004), 2719-2740.
[10] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao, On the concepts of balls in a D-metric space, Inter. J. Math. Math. Sci., 2005(1)(2005), 133-141.
[11] S.V.R.Naidu, K.P.R.Rao and N.Srinivasa Rao, On convergent sequences and fixed point theorems in D-metric spaces, Inter. J. Math. Math. Sci., 2005(12)(2005), 1969-1988.
[12] U.C.Gairola and N.Dhasmana, A Fixed theorem of Presic type for a pair of maps in G-metric spaces, Int. J. Math. Archive, 6(3)(2015), 196-200.
[13] U.C.Gairola and N.Dhasmana. A common Fixed point theorem of Presic type for four maps in G-metric spaces, Adv. Fixed Point Theory, 5(4)(2015), 396-406.
[14] Z.Mustafa and B.Sims. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2)(2006), 289-297.
Downloads
Published
2016-12-27
Issue
Section
Чланци