Connected Injective Domination of Graphs
Abstract
Let G = (V;E) be a connected graph. A subset S of V is calledinjective dominating set (Inj-dominating set) if for every vertex v 2 V
References
[1] Anwar Alwardi, R. Rangarajan and Akram Alqesmah, On the Injective domination of graphs, In communication.
[2] Anwar Alwardi, N. D. Soner and Karam Ebadi. On the Common neighbourhood domination number. Journal of Computer and Mathematical Sciences, 2(3)(2011), 547-556.
[3] A. Alwardi, B. Arsic, I. Gutman, N. D. Soner. The common neighborhood graph and its energy. Iran. J. Math. Sci. Inf., 7(2)(2012), 1-8.
[4] J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. The Macmillan Press Ltd., London, Basingstoke, 1976.
[5] F. Harary. Graph theory. Addison-Wesley, Reading Mass 1969.
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. undamentals of domination in graphs. Marcel Dekker, Inc., New York, 1998.
[7] S. T. Hedetneimi and R. C. Laskar. Connected domination in graphs, In B. Bollobas, (Ed.). Graph Theory and Cominatorics (pp. 209-218). Acadamic Press, London 1984.
[8] S. M. Hedetneimi, S. T. Hedetneimi, R. C. Laskar, L. Markus and P. J. Slater. Disjoint dominating sets in graphs. Proc. Int. Conf. on Disc.Math., IMI-IISc, Bangalore (2006). Ramanujan Mathematics Society Lecture Notes Series, 7(2008), 87-100.
[9] E. Sampathkumar and H. B. Walikar. The connected domination number of a graph. Jour. Math. Ply. Sci., 13(6)(1979), 607-613.
[10] H. B. Walikar, B. D. Acharya and E. Sampathkumar. Recent developments in the theory of domination in graphs, Mehta Research Institute, Allahabad, MRI Lecture Notes in Math.,
1 (1979).
[2] Anwar Alwardi, N. D. Soner and Karam Ebadi. On the Common neighbourhood domination number. Journal of Computer and Mathematical Sciences, 2(3)(2011), 547-556.
[3] A. Alwardi, B. Arsic, I. Gutman, N. D. Soner. The common neighborhood graph and its energy. Iran. J. Math. Sci. Inf., 7(2)(2012), 1-8.
[4] J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. The Macmillan Press Ltd., London, Basingstoke, 1976.
[5] F. Harary. Graph theory. Addison-Wesley, Reading Mass 1969.
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. undamentals of domination in graphs. Marcel Dekker, Inc., New York, 1998.
[7] S. T. Hedetneimi and R. C. Laskar. Connected domination in graphs, In B. Bollobas, (Ed.). Graph Theory and Cominatorics (pp. 209-218). Acadamic Press, London 1984.
[8] S. M. Hedetneimi, S. T. Hedetneimi, R. C. Laskar, L. Markus and P. J. Slater. Disjoint dominating sets in graphs. Proc. Int. Conf. on Disc.Math., IMI-IISc, Bangalore (2006). Ramanujan Mathematics Society Lecture Notes Series, 7(2008), 87-100.
[9] E. Sampathkumar and H. B. Walikar. The connected domination number of a graph. Jour. Math. Ply. Sci., 13(6)(1979), 607-613.
[10] H. B. Walikar, B. D. Acharya and E. Sampathkumar. Recent developments in the theory of domination in graphs, Mehta Research Institute, Allahabad, MRI Lecture Notes in Math.,
1 (1979).
Downloads
Published
2016-12-31
Issue
Section
Чланци