Chromatic Excellence in Fuzzy Graphs
Abstract
Let G be a simple fuzzy graph. The minimum number of k for which there exists a k-fuzzy colouring is called the fuzzy chromatic number of G denoted as f (G). ThenReferences
[1] Zadeh, L.A. Similarity relations and fuzzy ordering, Information Sciences, 3(2)(1971), 177-200.
[2] Kaufmann, A., Introduction la thorie des sous-ensembles
ous l'usage des ingnieurs (fuzzy sets theory), Paris: Masson 1973
[3] Sunitha, M.S and Mathew, S. Fuzzy Graph Theory: A Survey, Ann. Pure Appl. Math., 4(1)(2013), 92{110.
[4] Eslahchi, C and Onagh, B.N. Vertex Strength of Fuzzy Graphs, Int. J. Math. Math. Sci., Volume 2006, Article ID 43614, Pages 19. DOI: 10.1155/IJMMS/2006/43614
[5] Rosenfeld, A. Fuzzy Graphs, In: L. A. Zadeh, K-S Fu and K. Tanaka (Eds.). Proceedings of the USJapan Seminar on Fuzzy Sets and their Applications, University of California, Berkeley, California (July 14, 1974)(pp. 77-95), Elsevier Inc 1975. doi.org/10.1016/B978-0-12-775260-0.50008-6
[6] Lavanya, S. and Sattanathan, R. Fuzzy total coloring of fuzzy graphs, Int. J. Inf. Tech. Know. Manag., 2(1)(2009), 37-39.
[7] Sambathkumar, E. Chromatically fixed, free and totally free vertices in a graph, J. Comb. Infor. Sys. Sci., 17(1-2)(1992), 130{138.
[8] Samanta, S., Pramanik, T. and Pal, M. Fuzzy colouring of fuzzy graphs, Africa Math.,27(1)(2013), 37-50.
[9] Kishore, A. and Sunitha, M. S. Chromatic number of fuzzy graphs, Ann. Fuzzy Math. Inf., 7(4)(2014), 543-551.
[2] Kaufmann, A., Introduction la thorie des sous-ensembles
ous l'usage des ingnieurs (fuzzy sets theory), Paris: Masson 1973
[3] Sunitha, M.S and Mathew, S. Fuzzy Graph Theory: A Survey, Ann. Pure Appl. Math., 4(1)(2013), 92{110.
[4] Eslahchi, C and Onagh, B.N. Vertex Strength of Fuzzy Graphs, Int. J. Math. Math. Sci., Volume 2006, Article ID 43614, Pages 19. DOI: 10.1155/IJMMS/2006/43614
[5] Rosenfeld, A. Fuzzy Graphs, In: L. A. Zadeh, K-S Fu and K. Tanaka (Eds.). Proceedings of the USJapan Seminar on Fuzzy Sets and their Applications, University of California, Berkeley, California (July 14, 1974)(pp. 77-95), Elsevier Inc 1975. doi.org/10.1016/B978-0-12-775260-0.50008-6
[6] Lavanya, S. and Sattanathan, R. Fuzzy total coloring of fuzzy graphs, Int. J. Inf. Tech. Know. Manag., 2(1)(2009), 37-39.
[7] Sambathkumar, E. Chromatically fixed, free and totally free vertices in a graph, J. Comb. Infor. Sys. Sci., 17(1-2)(1992), 130{138.
[8] Samanta, S., Pramanik, T. and Pal, M. Fuzzy colouring of fuzzy graphs, Africa Math.,27(1)(2013), 37-50.
[9] Kishore, A. and Sunitha, M. S. Chromatic number of fuzzy graphs, Ann. Fuzzy Math. Inf., 7(4)(2014), 543-551.
Downloads
Published
2017-02-12
Issue
Section
Чланци