Estimate for p-valently Functions at the Boundary
Abstract
In this paper, a boundary version of the Schwarz lemma for classesM(p) is investigated. For the function f(z) = zp +ap+1zp+1 +cp+2zp+2 +::: dened in the unit disc D = fz : jzj < 1g such that f(z) 2M(p), we estimate a modulus of the angular derivative of f(z) function at the boundary point b with f′(b) = 0. The sharpness of these inequalities is also proved.
References
Синиша Црвенковић и Даниел А. Романо: Рана алгебра и раноалгебарско мишљење, У: Александра Михајловић, (ур.) Методички аспекти наставе математике III. Трећа међународна конференција МATM 2014, 14-15. Јуни 2014, (pp. 27-47), Факултет педагошких наука,
Јагодина 2015, ISBN 978-86-7604-141-1.
Kilpatrick, J., Swafford, J. and B. Findell (2001). Adding it up: helping children learn mathematics. National Academy Press Washington, DC
Kriegler, S. (1997, 2006): Just what is algebraic thinking? Доступно на адреси:
http://www.mathandteaching.org/uploads/Articles_PDF/articles-01-kriegler.pdf
Legutko, M. (2008). An analysis of students’ mathematical errors in the teaching-research process. In B. Czarnocha (Ed.), Handbook for mathematics teaching: Teacher experiment. A tool for research (pp. 141–152). Rzeszόw: University of Rzeszόw.
Olivier, A. (1989). Handling pupils’ misconceptions. Pythagoras, 21: 10–19.
Radatz, H. (1979). Error analysis in mathematics education. Journal for Research in Mathematics Education, 10(3): 163–172.
Романо, Д.А. (2010). Шта знамо о математичком мишљењу? MAT-KOL (Banja Luka), Posebna izdanja, No. 13(2010).
Schwab, J.J. (1964). Structure of the disciplines: meanings and significances. In Ford, G. W. & Pugno, L. The structure of knowledge and the curriculum. (pp. 6-30). Chicago: Rand McNally
van Hiele, P. M. (1986). Structure and Insight. New York: Academy Press.