Edge Version of Harmonic Index and Polynomial of Some Classes of Bridge Graphs

Authors

  • Rabia Nazir
  • Muhammad Shoaib Sardar
  • Sohail Zafar
  • Zohaib Zahid

Abstract

We report explicit formulas for the edge version of harmonic index
and harmonic polynomial of several classes of bridge graphs.

References

[1] B. Bela: Modern Graph Theory, Graduate Texts in Mathematics 184, New York: Springer-Verlag. (1998), pp. 6.

[2] S.H. Bertz: The bond graph, J.C.S. Chem. Commun., (1981), 818-820.

[3] Devillers, J. and Balaban: Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, (1999), 31.

[4] S. Fajtlowicz: On conjectures of Grafiti II, Congr. Numer. 60 (1987), 187-197.

[5] O. Favaron, M. Maheo, J. F. Sacle: Some eigenvalue properties in graphs (conjectures of Grafiti II), Discrete Math. 111 (1993), 197-220.

[6] I. Gutman: Edge versions of topological indices: I. Gutman and B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications II , Univ. Kragujevac, Kraguje-
vac, 3, 2010.

[7] I. Gutman, E. Estrada: Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci., 36 (1996), 541-543.

[8] I. Gutman, L. Popovic, B. K. Mishra, M. Kaunar, E. Estrada, N. Guevara: Application of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc., 62 (1997), 1025-1029.

[9] I. Gutman, Z. Tomovic: On the application of line graphs in quantitative structure-property studies, J. Serb. Chem. Soc., 65 (8) (2000), 577-580.

[10] I. Gutman, Z. Tomovic: Modeling boiling points of cycloalkanes by means of iterated line graph sequences, J. Chem. Inf. Comput. Sci., 41 (2001), 1041-1045.

[11] F. Harary, R.Z. Norman: Some properties of line digraphs, Rendiconti del Circolo Matematico di Palermo, 9 (2) (1960), 161-169.

[12] H. Hosoya: "Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons", Bulletin of the Chemical Society
of Japan, 44 (9) (1971), 2332-2339.

[13] A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani: The edge versions of the Wiener index, MATCH Comm. Math. Comput. Chem., 61 (2009), 663-672.

[14] M.A. Iranmanesh, M. Saheli: On the harmonic index and harmonic polynomial of Caterpillars with diameter four, Iranian J. of Math. Chem., 6(1) (2015), 41-49.

[15] J. Krausz: Dmonstration nouvelle d'un thorme de Whitney sur les rseaux, Mat. Fiz. Lapok 50: (1943), 75-85.

[16] X. Li, Y. Shi: A survey on the Randic index, MATCH Commun. Math. Comput. Chem., 59(1) (2008), 127-156.

[17] X. Li, Y. Shi, L. Wang: An updated survey on the Randic index, in: B.F. I. Gutman (Ed.), Recent Results in the Theory of Randic Index, University of Kragujevac and Faculty
of Science Kragujevac, 2008, 9-47.

[18] R. Nazir, S. Sardar, S. Zafar, Z. Zahid: Edge version of harmonic polynomial and harmonic index, Journal of Applied Mathematics and Informatics, 34 (2016), 479-486.

[19] M. F. Nadeem, S. Zafar, Z. Zahid: Certain topological indicies of the line graph of subdivsion graphs, Appl. Math. Comput., 271 (2015), 790-794.

[20] M. F. Nadeem, S. Zafar, Z. Zahid: On Topological properties of the line graph of subdivision graphs of certain nanostructures, Appl. Math. Comput., 273 (2016), 125-130.

[21] M. F. Nadeem, S. Zafar, Z. Zahid: On the edge version of geometric-arithmetic index of nanocones, Studia Ubb Chemia, 61(1), (2016), 273-282.

[22] M. F. Nadeem, S. Zafar, Z. Zahid: Some Topological Indices of L(S(CNCk[n])), Punjab University Journal of Mathematics, 49 (1)(2017), 13-17.

[23] D. Plavsic, S. Nikolic, N. Trinajstic, Z. Mihalic: On the Harary Index for the Characterization of Chemical Graphs, 12 (1993), 235-250.

[24] J. Rada, R. Cruz: Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 603-616.

[25] T. Doslic, M.S Litz: Matchings and Independent Sets in Polyphenylene Chains, MATCH Commun. Math. Comput. Chem., 67 (2012), 313-330.

[26] R.J. Trudeau: Introduction to Graph Theory, New York: Dover Pub. (1993), 19.

[27] H. Whitney: Congruent graphs and the connectivity of graphs : American Journal of Mathematics, 54 (1) (1932), 150-168 .

[28] G. Yu, L. Feng: On connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem., 69 (2013), 611-628.

[29] L. Zhong: The harmonic index for graphs, Appl. Math. Lett., 25 (2012), 561-566.

[30] L. Zhong: The harmonic index on unicyclic graphs, Ars Combin., 104 (2012), 261-269.

[31] L. Zhong, K. Xu: The harmonic index for bicyclic graphs, Utilitas Math., 90 (2013), 23-32.

Published

2017-02-14

Issue

Section

Чланци