Common Fixed Point Theorems in Dislocated Generalized Intuitionistic Fuzzy Metric Space


  • M. Jeyaraman
  • R Muthuraj
  • M. Sornavalli
  • S. Manro


In this paper we dene dislocated generalized intuitiionistic fuzzy
metric space and prove common xed point theorems for weakly compatible maps in dislocated generalized intuitionistic fuzzy metric spaces.


[1] C. Alaca, D. Tukoglu and C. Yiliz. Fixed points in intuitionistic fuzzy metric spaces, Chaos, solitons and fractals, 29(5)(2006), 1073-1078.

[2] K. T. Atanassov. Intuitionistic fuzzy Sets, Fuzzy Sets and Systems, 20(1)(1986), 87-96.

[3] G.Balasubramanian, M. Rajeswari and M. Jeyaraman. Common fixed point theoremsin generalized intuitionistic fuzzy metric space, J. Adv. studies in Topology, 7(2)(2016), 68-78.

[4] A. George and P. Veeramani. On Some results in fuzzy metric spaces, Fuzzy sets and systems, 64(3)(1994), 395-399.

[5] P. Hitzler and A.K. Seda. Dislocated topologies, J. Electr. Eng., 51(12)(2000), 3-7.

[6] F.He. Common fixed point of four self maps on dislocated metric spaces, J. Nonlinear Sci. Appl., 8(2015), 301- 308.

[7] O. Kaleva and S. Seikala. On fuzzy metric spaces, Fuzzy Sets and Systems, 12(1984), 215-229.

[8] E. Karpinar and P. Salimi. Dislocated metric space to metric spaces with some fixed point theorems, Fixed point theory Appl., 2013 2013:222 DOI: 10.1186/1687-1812-2013-222

[9] Z.Kastriot, A. Isufati and P. S. Kumari. Fixed point results and E.A Property in Dislocated and Dislocated Quasi- metric spaces, Turkish journal of analysis and Number Theory,
3(1)(2015), 24-29.

[10] O. Kramosil and J. Michalek. Fuzzy metric and statistical metric spaces, Kybernetics, 11(5)(1975), 330-334.

[11] P.S. Kumari, V.V.Kumar and R. Sarma. New version for Hardy and Rogers type mapping in dislocated metric space, Inter. J. Basic and Appl. Sci., 1(4)(2012), 609-617.

[12] P.S. Kumari and P. Dinesh. Connecting various types of cyclic contractions and contractive self-mappings with Hardy-Rogers self mappings, Fixed point Theory and Applications, 2016
2016:15 DOI: 10.1186/s13663-016-0498-3 1-19.

[13] P.S. Kumari, V.V. Kumar and R. Sarma. Common foxed point theorems on weakly compatible maps on dislocated metric space, Math. Sci, (2012) 6: 71. doi:10.1186/2251-7456-6-71

[14] P.S. Kumari, Z. Kastriot and P. Dinesh. d- Neighbourhood system and generalized F- contraction in dislocated metric space, Springerplus, 2015; 4: 368, doi: 10.1186/s40064-015-

[15] P.S. Kumari and P. Dinesh. Cyclic contractions and xed point theorems on various generating spaces, Fixed Point Theory Appl., 2015 2015:153, DOI: 10.1186/s13663-015-0403-5

[16] P.S. Kumari and P.Dinesh. Cyclic compatible contraction and related fixed point Theorems, Fixed point Theory Appl. 2016 2016:28, DOI: 10.1186/s13663-016-0521-8

[17] D. Panthi and K.Jha. A Common fixed point theorems in dislocated metric space, Appl Math. Sci., 6(91) (2012), 497-4503,

[18] J.H. Park, J.S. Park and Y.C. Kwun. A Common fixed point theorems in dislocated metric space, Advances in Natural Comput, and Data mining (Proc.2nd ICNC and FSKD), (2006),

[19] J.S. Park. Fixed point theorem for common property (E.A) and weak compatible functions in intuitionistic fuzzy metric spaces, Inter. J. Fazzy Logic Int. Systems, 11(3)(2011), 149-142.

[20] R. Sarma and P.S. Kumari. On Dislocated metric spaces, International Journal of Mathematical Archive(IJMA), 3(1)(2012), 72-77.

[21] S.Sedghi and N.Shobe. Fixed point theorems in M- fuzzy metric spaces with property (E), Advances in Fuzzy in Mathematics, 1(1)(2006), 55-65.

[22] S. Sedghi and N. Shobe. A Common fixed point theorem in two M-fuzzy metric spaces, Commun. Korean. Math. Soc., 22(4)(2007), 513-526.

[23] L.A.Zadeh. Fuzzy sets, Information and Control, 8(1965), 338- 353.