A Study of the Inherent Inj-equitable Graphs
Abstract
Let G be a graph. The inherent Inj-equitable graph of a graph G(IIE(G)) is the graph with the same vertices as G and any two vertices u and v are adjacent in IIE(G) if they are adjacent in G and jdegin(u)
References
[1] A. Alkenani, H. Alashwali and N. Muthana. On the Injective Equitable Domination of Graphs. Applied Mathematics, 7(17)(2016), 2132-2139.
[2] A. Alwardi, A. Alqesmah, and R. Rangarajan. Independent Injective Domination of Graphs. Int. J. Adv. Appl. Math. and Mech., 3(4)(2016), 142-151.
[3] A. Alwardi, B. Arsic, I. Gutman and N. D. Soner. The common neighborhood graph and its energy. Iran. J. Math. Sci. Inf., 7(2)(2012), 1-8.
[4] R. Balakrishnan abd K. Ranganathan. A textbook of graph theory. Springer-velag, New York 2000.
[5] R. C. Bose. Strongly Regular Graphs, Partial geometries and partially balanced designs. Pacific J. Math., 13(2)(1963), 389-419.
[6] G. Chartrand and L. Lesniak. Graphs and Diagraphs. 4th Edition. CRC Press, Boca Raton, (2005).
[7] K. M. Dharmalingam. Equitable graph of a graph, Proyecciones J. Math., 31(4)(2012), 363-372.
[8] F. Harary. Graphs Theory. Addison-Wesley, Reading Mass, (1969).
[2] A. Alwardi, A. Alqesmah, and R. Rangarajan. Independent Injective Domination of Graphs. Int. J. Adv. Appl. Math. and Mech., 3(4)(2016), 142-151.
[3] A. Alwardi, B. Arsic, I. Gutman and N. D. Soner. The common neighborhood graph and its energy. Iran. J. Math. Sci. Inf., 7(2)(2012), 1-8.
[4] R. Balakrishnan abd K. Ranganathan. A textbook of graph theory. Springer-velag, New York 2000.
[5] R. C. Bose. Strongly Regular Graphs, Partial geometries and partially balanced designs. Pacific J. Math., 13(2)(1963), 389-419.
[6] G. Chartrand and L. Lesniak. Graphs and Diagraphs. 4th Edition. CRC Press, Boca Raton, (2005).
[7] K. M. Dharmalingam. Equitable graph of a graph, Proyecciones J. Math., 31(4)(2012), 363-372.
[8] F. Harary. Graphs Theory. Addison-Wesley, Reading Mass, (1969).
Downloads
Published
2017-04-16
Issue
Section
Чланци