Odd Harmonious Labeling of Plus Graphs
Abstract
A graph G(p; q) is said to be odd harmonious if there exists aninjection f : V (G) ! f0; 1; 2; ; 2q
References
[1] V.J.Kaneria and H.M.Makadia. Graceful labeling of plus Graph. Inter. J. Current Research Sci. Tech., 1(3)(2015), 15-20.
[2] V.J.Kaneria, Meera Meghpara and H.M.Makadia. Graceful labeling for open star of graphs. Inter. J. Math. Stat. Invent., 2(9)(2014), 19-23.
[3] J.A.Gallian. A dynamic Survey of Graph Labeling. The Electronics Journal of Combinatorics, 2015, DS6.
[4] R. L. Graham and N. J. A. Sloane. On Additive bases and Harmonious Graphs. SIAM J. Algebr. Disc. Meth., 4(1980), 382-404.
[5] F. Harary. Graph Theory, Addison-Wesley, Massachusetts, 1972.
[6] Z.Liang and Z.Bai. On the Odd Harmonious Graphs with Applications. J. Appl. Math.Comput., 29 (2009), 105-116.
[7] P. Jeyanthi , S. Philo and Kiki A. Sugeng. Odd harmonious labeling of some new families of graphs., SUT J. Math., 51(2)(2015), 53-65.
[8] P.Jeyanthi and S.Philo. Odd Harmonious Labeling of Some Cycle Related Graphs. PROYECCIONES J. Math., 35(1)(2016), 85-98.
[9] P. Selvaraju, P. Balaganesan and J.Renuka. Odd Harmonious Labeling of Some Path Related Graphs. Inter. J. Math. Sci. Engg. Appls., 7(III)(2013), 163-170.
[10] S.K.Vaidya and N. H. Shah. Some New Odd Harmonious Graphs. Inter. J. Math. Soft Computing, 1(2011), 9-16.
[11] S.K.Vaidya and N. H. Shah. Odd Harmonious Labeling of Some Graphs. Inter. J.Math. Combin., 3(2012), 105-112.
[12] S.K.Vaidya, S.Srivastav, V.J.Kaneria and G.V.Ghodasara. Cordial and 3-equitable labeling of star of a cycle. Mathematics Today, 24(2008), 54-64.
[2] V.J.Kaneria, Meera Meghpara and H.M.Makadia. Graceful labeling for open star of graphs. Inter. J. Math. Stat. Invent., 2(9)(2014), 19-23.
[3] J.A.Gallian. A dynamic Survey of Graph Labeling. The Electronics Journal of Combinatorics, 2015, DS6.
[4] R. L. Graham and N. J. A. Sloane. On Additive bases and Harmonious Graphs. SIAM J. Algebr. Disc. Meth., 4(1980), 382-404.
[5] F. Harary. Graph Theory, Addison-Wesley, Massachusetts, 1972.
[6] Z.Liang and Z.Bai. On the Odd Harmonious Graphs with Applications. J. Appl. Math.Comput., 29 (2009), 105-116.
[7] P. Jeyanthi , S. Philo and Kiki A. Sugeng. Odd harmonious labeling of some new families of graphs., SUT J. Math., 51(2)(2015), 53-65.
[8] P.Jeyanthi and S.Philo. Odd Harmonious Labeling of Some Cycle Related Graphs. PROYECCIONES J. Math., 35(1)(2016), 85-98.
[9] P. Selvaraju, P. Balaganesan and J.Renuka. Odd Harmonious Labeling of Some Path Related Graphs. Inter. J. Math. Sci. Engg. Appls., 7(III)(2013), 163-170.
[10] S.K.Vaidya and N. H. Shah. Some New Odd Harmonious Graphs. Inter. J. Math. Soft Computing, 1(2011), 9-16.
[11] S.K.Vaidya and N. H. Shah. Odd Harmonious Labeling of Some Graphs. Inter. J.Math. Combin., 3(2012), 105-112.
[12] S.K.Vaidya, S.Srivastav, V.J.Kaneria and G.V.Ghodasara. Cordial and 3-equitable labeling of star of a cycle. Mathematics Today, 24(2008), 54-64.
Downloads
Published
2017-04-18
Issue
Section
Чланци