Common Best Proximity Points in Complex Valued Metric Spaces
Abstract
In this paper, we obtain the existence and the uniqueness of com-mon best proximity point theorems for non-self mappings between two subsets of a complex valued metric space satisfying certain contractive conditions. Our results supported by some examples.
References
[1] J. Ahmad, A. Azam and S. Saejung. Common fixed point results for contractive mappings in complex valued metric spaces. Fixed Point Theory Appl., 2014, 2014:67.
[2] A. Amini-Harandi. Common best proximity points theorems in metric spaces. Optim. Lett., 8(2)(2014). 581-589.
[3] A. Azam, B. Fisher and M. Khan. Common fixed point theorems in complex valued metric spaces. Num. Func. Anal. Optim., 32(3)(2011), 243-253.
[4] B. S. Choudhury, N. Metiya and P. Maity. Best proximity point results in complex valued metric spaces. Inter. J. Anal., Volume 2014 (2014), Article ID 827862.
[5] G. E. Hardy and T. D. Rogers. A Generalization of fixed point theorem of Reich. Canad. Math. Bull., 16(1973), 201-206.
[6] G. Jungck. Commuting mappings and fixed points. Amer. Math. Monthly, 83(4)(1976), 261-263.
[7] C. Klin-eam and C. Suanoom. Some common fixed point theorems for generalized-contractive type mappings on complex-valued metric spaces. Abstract and Applied Analysis, Volume 2013(2013), Article ID 604215,.
[8] T. S. Kumar and R. J. Hussain. Common fixed point theorems for contractive type mappings in complex valued metric spaces. International Journal of Science and Research (IJSR),
3(8)(2014), 1131-1134.
[9] A. A. Mukheimer. Some common fixed point theorems in complex valued b-metric spaces. The Scientific World Journal, Volume 2014(2014), ID:587825.
[10] S. Reich. Kannan's fixed point theorem. Boll. Un. Mat. Ital., 4(4)(1971), 1-11.
[11] S. Reich. Some remarks concerning contraction mappings. Canad. Math. Bull., 14(1971), 121-124.
[12] F. Rouzkard and M. Imdad. Some common fixed point theorems on complex valued metric spaces. Computers and Mathematics with Applications, 64(6)(2012), 1866-1874.
[13] S. S. Basha. Common best proximity points: global minimal solutions. TOP (An Official Journal of the Spanish Society of Statistics and Operations Research), 21(1)(2013), 182-188.
[14] S. S. Basha. Common best proximity points: global minimization of multi-objective functions. J. Global Optim., 54(2)(2012), 367-373.
[15] W. Sintunavarat and P. Kumam. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Ineq. Appl., 2012, 2012:84.
[2] A. Amini-Harandi. Common best proximity points theorems in metric spaces. Optim. Lett., 8(2)(2014). 581-589.
[3] A. Azam, B. Fisher and M. Khan. Common fixed point theorems in complex valued metric spaces. Num. Func. Anal. Optim., 32(3)(2011), 243-253.
[4] B. S. Choudhury, N. Metiya and P. Maity. Best proximity point results in complex valued metric spaces. Inter. J. Anal., Volume 2014 (2014), Article ID 827862.
[5] G. E. Hardy and T. D. Rogers. A Generalization of fixed point theorem of Reich. Canad. Math. Bull., 16(1973), 201-206.
[6] G. Jungck. Commuting mappings and fixed points. Amer. Math. Monthly, 83(4)(1976), 261-263.
[7] C. Klin-eam and C. Suanoom. Some common fixed point theorems for generalized-contractive type mappings on complex-valued metric spaces. Abstract and Applied Analysis, Volume 2013(2013), Article ID 604215,.
[8] T. S. Kumar and R. J. Hussain. Common fixed point theorems for contractive type mappings in complex valued metric spaces. International Journal of Science and Research (IJSR),
3(8)(2014), 1131-1134.
[9] A. A. Mukheimer. Some common fixed point theorems in complex valued b-metric spaces. The Scientific World Journal, Volume 2014(2014), ID:587825.
[10] S. Reich. Kannan's fixed point theorem. Boll. Un. Mat. Ital., 4(4)(1971), 1-11.
[11] S. Reich. Some remarks concerning contraction mappings. Canad. Math. Bull., 14(1971), 121-124.
[12] F. Rouzkard and M. Imdad. Some common fixed point theorems on complex valued metric spaces. Computers and Mathematics with Applications, 64(6)(2012), 1866-1874.
[13] S. S. Basha. Common best proximity points: global minimal solutions. TOP (An Official Journal of the Spanish Society of Statistics and Operations Research), 21(1)(2013), 182-188.
[14] S. S. Basha. Common best proximity points: global minimization of multi-objective functions. J. Global Optim., 54(2)(2012), 367-373.
[15] W. Sintunavarat and P. Kumam. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Ineq. Appl., 2012, 2012:84.
Downloads
Published
2017-04-26
Issue
Section
Чланци