TL-Vague Modules

Authors

  • Dilek Bayrak
  • Sultan Yamak

Abstract

In this paper, we investigated concept of TL-vague module and
obtained some basic properties of this concept.

References

[1] J.M. Anthony and H. Sherwood. Fuzzy groups redefined. J. Math. Anal. Appl., 69(1)(1979), 124--130.

[2] K.R. Bhutani and J.N. Mordeson. Similarity relations, vague groups and fuzzy sub groups. New Mathematics and Natural Computation, 2(3)(2006), 195--208.

[3] M. Demirci. Vague groups, J. Math. Anal. Appl., 230(1)(1999), 142--156.

[4] M. Demirci. Fuzzy functions and their fundamental properties. Fuzzy Sets Syst., 106(1999), 239--246.

[5] M. Demirci and J. Recasens. Fuzzy groups, fuzzy functions and fuzzy equivalence relations. Fuzzy Sets Syst., 144(3)(2004), 441--458 .

[6] M. Demirci. Errata to Fuzzy Group Based on fuzzy binary operation, Computers Mat. Appl., 49(11-12)(2005), 1951--1952.

[7] J. A. Goguen. L-fuzzy sets. J. Math. Anal. Appl., 18(1)(1967), 145--174.

[8] J. N. Mordeson and K. R. Bhutani. Vague group and vague field. J. Fuzzy Math., 15(4)(2007), 927--944.

[9] Q. Ren, D. Zang and Z. Ma. On vague subring and its structure. In: Bing-Yuan Cao (Ed.). Fuzzy Information and Engineering (Vol. 40, pp. 138--143), Proceedings of the Second International Conference of Fuzzy Information and Engineering (ICFIE), 2007.

[10] A. Rosenfeld. Fuzzy groups. J. Math. Anal. Appl., 5(3) (1971), 512--517

[11] M. Sasaki. Fuzzy functions. Fuzzy Sets Syst., 55(3)(1993), 295--301.

[12] S. Sezer. Vague groups and generalized vague subgroups on the basis of ([0; 1];6; ^). Information Sciences, 174(1-2)(2005), 123--142.

[13] S. Sezer. Some properties of vague rings. Int. J. Algebra, 4(16)(2010), 751--760.

[14] X. Yuan and E.S. Lee. Fuzzy group based on fuzzy binary operation, Computer Mat. Appl., 47(4-5)(2004), 631--641.

[15] L.A. Zadeh. Fuzzy sets. Inform. Control, 8(3)(1968), 338--353.

[16] L.A. Zadeh. Similarity relations and fuzzy ordering. Inf. Sci., 3(2)(1971), 177--200.

Published

2018-01-10

Issue

Section

Чланци